IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i11p2413-2432.html
   My bibliography  Save this article

Disaggregate-level estimates of indebtedness in the state of Uttar Pradesh in India: an application of small-area estimation technique

Author

Listed:
  • Hukum Chandra
  • Nicola Salvati
  • U. C. Sud

Abstract

The National Sample Survey Organisation (NSSO) surveys are the main source of official statistics in India, and generate a range of invaluable data at the macro level (e.g. state and national levels). However, the NSSO data cannot be used directly to produce reliable estimates at the micro level (e.g. district or further disaggregate level) due to small sample sizes. There is a rapidly growing demand of such micro-level statistics in India, as the country is moving from centralized to more decentralized planning system. In this article, we employ small-area estimation (SAE) techniques to derive model-based estimates of the proportion of indebted households at district or at other small-area levels in the state of Uttar Pradesh in India by linking data from the Debt--Investment Survey 2002--2003 of NSSO and the Population Census 2001 and the Agriculture Census 2003. Our results show that the model-based estimates are precise and representative. For many small areas, it is even not possible to produce estimates using sample data alone. The model-based estimates generated using SAE are still reliable for such areas. The estimates are expected to provide invaluable information to policy analysts and decision-makers.

Suggested Citation

  • Hukum Chandra & Nicola Salvati & U. C. Sud, 2011. "Disaggregate-level estimates of indebtedness in the state of Uttar Pradesh in India: an application of small-area estimation technique," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2413-2432, January.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:11:p:2413-2432
    DOI: 10.1080/02664763.2011.559202
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2011.559202
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2011.559202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelo Moretti, 2023. "Regional Public Opinions on LGBTI People Equal Opportunities in Employment: Evidence from the Eurobarometer Programme using Small Area Estimation," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 166(2), pages 413-438, April.
    2. Md Jamal Hossain & Sumonkanti Das & Hukum Chandra & Mohammad Amirul Islam, 2020. "Disaggregate level estimates and spatial mapping of food insecurity in Bangladesh by linking survey and census data," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-16, April.
    3. Guha Saurav & Chandra Hukum, 2022. "Measuring and Mapping Micro Level Earning Inequality towards Addressing the Sustainable Development Goals – A Multivariate Small Area Modelling Approach," Journal of Official Statistics, Sciendo, vol. 38(3), pages 823-845, September.
    4. Hukum Chandra, 2021. "District-Level Estimates of Poverty Incidence for the State of West Bengal in India: Application of Small Area Estimation Technique Combining NSSO Survey and Census Data," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(2), pages 375-391, June.
    5. Priyanka Anjoy & Hukum Chandra & Pradip Basak, 2019. "Estimation of Disaggregate-Level Poverty Incidence in Odisha Under Area-Level Hierarchical Bayes Small Area Model," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(1), pages 251-273, July.
    6. Saurav Guha & Hukum Chandra, 2021. "Measuring disaggregate level food insecurity via multivariate small area modelling: evidence from rural districts of Uttar Pradesh, India," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(3), pages 597-615, June.
    7. Ranjbar, Setareh & Salvati, Nicola & Pacini, Barbara, 2023. "Estimating heterogeneous causal effects in observational studies using small area predictors," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    8. Saurav Guha & Hukum Chandra, 2022. "Multivariate Small Area Modelling for Measuring Micro Level Earning Inequality: Evidence from Periodic Labour Force Survey of India," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 162(2), pages 643-663, July.
    9. Boubeta, Miguel & Lombardía, María José & Morales, Domingo, 2017. "Poisson mixed models for studying the poverty in small areas," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 32-47.
    10. Saurav Guha & Hukum Chandra, 2021. "Measuring and Mapping Disaggregate Level Disparities in Food Consumption and Nutritional Status via Multivariate Small Area Modelling," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 154(2), pages 623-646, April.
    11. Chandra, H, 2018. "Localized estimates of the incidence of indebtedness among rural households in Uttar Pradesh: an application of small area estimation technique," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 31(1).
    12. Chandra, Hukum & Salvati, Nicola & Chambers, Ray, 2018. "Small area estimation under a spatially non-linear model," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 19-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    2. Gheriballah, Abdelkader & Laksaci, Ali & Sekkal, Soumeya, 2013. "Nonparametric M-regression for functional ergodic data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 902-908.
    3. Laurent Delsol, 2013. "No effect tests in regression on functional variable and some applications to spectrometric studies," Computational Statistics, Springer, vol. 28(4), pages 1775-1811, August.
    4. Mustapha Rachdi & Ali Laksaci & Zoulikha Kaid & Abbassia Benchiha & Fahimah A. Al‐Awadhi, 2021. "k‐Nearest neighbors local linear regression for functional and missing data at random," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(1), pages 42-65, February.
    5. Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
    6. Zhiyong Zhou & Zhengyan Lin, 2016. "Asymptotic normality of locally modelled regression estimator for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 116-131, March.
    7. Heungsun Hwang & Hye Suk & Yoshio Takane & Jang-Han Lee & Jooseop Lim, 2015. "Generalized Functional Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 101-125, March.
    8. Delicado, P., 2011. "Dimensionality reduction when data are density functions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 401-420, January.
    9. Wang, Guochang & Lin, Nan & Zhang, Baoxue, 2012. "Functional linear regression after spline transformation," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 587-601.
    10. Wafaa Benyelles & Tahar Mourid, 2012. "On a minimum distance estimate of the period in functional autoregressive processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(8), pages 1703-1718, February.
    11. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    12. Zhou, Jie, 2011. "Maximum likelihood ratio test for the stability of sequence of Gaussian random processes," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2114-2127, June.
    13. Benhenni, K. & Hedli-Griche, S. & Rachdi, M. & Vieu, P., 2008. "Consistency of the regression estimator with functional data under long memory conditions," Statistics & Probability Letters, Elsevier, vol. 78(8), pages 1043-1049, June.
    14. Martínez-Camblor, Pablo & Corral, Norberto, 2011. "Repeated measures analysis for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3244-3256, December.
    15. Lydia Kara-Zaitri & Ali Laksaci & Mustapha Rachdi & Philippe Vieu, 2017. "Uniform in bandwidth consistency for various kernel estimators involving functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(1), pages 85-107, January.
    16. Girard, Stéphane & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Functional estimation of extreme conditional expectiles," Econometrics and Statistics, Elsevier, vol. 21(C), pages 131-158.
    17. Aguilera, Ana M. & Escabias, Manuel & Valderrama, Mariano J., 2008. "Discussion of different logistic models with functional data. Application to Systemic Lupus Erythematosus," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 151-163, September.
    18. Germán Aneiros & Philippe Vieu, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 27-32, March.
    19. Christian Ritz & Jens C. Streibig, 2009. "Functional Regression Analysis of Fluorescence Curves," Biometrics, The International Biometric Society, vol. 65(2), pages 609-617, June.
    20. Lijie Gu & Li Wang & Wolfgang Härdle & Lijian Yang, 2014. "A simultaneous confidence corridor for varying coefficient regression with sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 806-843, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:11:p:2413-2432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.