IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v184y2023ics0167947323000531.html
   My bibliography  Save this article

Estimating heterogeneous causal effects in observational studies using small area predictors

Author

Listed:
  • Ranjbar, Setareh
  • Salvati, Nicola
  • Pacini, Barbara

Abstract

The official statistics produced by National Statistical Institutes are mainly used by policy makers to take decisions. In particular, when policy makers and decision takers would like to know the impact of a given policy, it is important to acknowledge the heterogeneity of the treatment effects for different domains. If the domain of interest is small with regard to its sample size, then the evaluator has entered the small area estimation (SAE) dilemma. Based on the modification of the Inverse Propensity Weighting estimator and the traditional small area predictors, new estimators of area specific average treatment effects are proposed for unplanned domains. A robustified version of the predictor against presence of the outliers is also developed. Analytical Mean Squared Error (MSE) estimators of the proposed predictors are derived. These methods provide a tool to map the policy impacts that can help to better target the treatment group(s). The properties of these small area estimators are illustrated by means of a design-based simulation using a real data set where the aim is to study the effects of permanent versus temporary contracts on the economic insecurity of households in different regions of Italy.

Suggested Citation

  • Ranjbar, Setareh & Salvati, Nicola & Pacini, Barbara, 2023. "Estimating heterogeneous causal effects in observational studies using small area predictors," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:csdana:v:184:y:2023:i:c:s0167947323000531
    DOI: 10.1016/j.csda.2023.107742
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323000531
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arpino, Bruno & Mealli, Fabrizia, 2011. "The specification of the propensity score in multilevel observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1770-1780, April.
    2. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    3. Julia Bachtrögler & Ugo Fratesi & Giovanni Perucca, 2020. "The influence of the local context on the implementation and impact of EU Cohesion Policy," Regional Studies, Taylor & Francis Journals, vol. 54(1), pages 21-34, January.
    4. Arie Kapteyn & Peter Kooreman & Rob Willemse, 1988. "Some Methodological Issues in the Implementation of Subjective Poverty Definitions," Journal of Human Resources, University of Wisconsin Press, vol. 23(2), pages 222-242.
    5. Ray Chambers & Nikos Tzavidis, 2006. "M-quantile models for small area estimation," Biometrika, Biometrika Trust, vol. 93(2), pages 255-268, June.
    6. Hukum Chandra & Nicola Salvati & U. C. Sud, 2011. "Disaggregate-level estimates of indebtedness in the state of Uttar Pradesh in India: an application of small-area estimation technique," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2413-2432, January.
    7. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    8. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    9. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    10. Ray Chambers & Hukum Chandra & Nicola Salvati & Nikos Tzavidis, 2014. "Outlier robust small area estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 47-69, January.
    11. Kim, Gi-Soo & Paik, Myunghee Cho & Kim, Hongsoo, 2017. "Causal inference with observational data under cluster-specific non-ignorable assignment mechanism," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 88-99.
    12. Elizabeth A. Stuart & Stephen R. Cole & Catherine P. Bradshaw & Philip J. Leaf, 2011. "The use of propensity scores to assess the generalizability of results from randomized trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(2), pages 369-386, April.
    13. J. D. Opsomer & G. Claeskens & M. G. Ranalli & G. Kauermann & F. J. Breidt, 2008. "Non‐parametric small area estimation using penalized spline regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 265-286, February.
    14. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    15. Wooldridge, Jeffrey M., 2007. "Inverse probability weighted estimation for general missing data problems," Journal of Econometrics, Elsevier, vol. 141(2), pages 1281-1301, December.
    16. Jiming Jiang & P. Lahiri, 2006. "Mixed model prediction and small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-96, June.
    17. Peng Ding & Avi Feller & Luke Miratrix, 2019. "Decomposing Treatment Effect Variation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 304-317, January.
    18. Stefani Scherer, 2009. "The Social Consequences of Insecure Jobs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 93(3), pages 527-547, September.
    19. Miratrix, Luke W. & Sekhon, Jasjeet S. & Theodoridis, Alexander G. & Campos, Luis F., 2018. "Worth Weighting? How to Think About and Use Weights in Survey Experiments," Political Analysis, Cambridge University Press, vol. 26(3), pages 275-291, July.
    20. González-Manteiga, W. & Lombardi­a, M.J. & Molina, I. & Morales, D. & Santamari­a, L., 2008. "Analytic and bootstrap approximations of prediction errors under a multivariate Fay-Herriot model," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5242-5252, August.
    21. Annamaria Bianchi & Nicola Salvati, 2015. "Asymptotic Properties and Variance Estimators of the M-quantile Regression Coefficients Estimators," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(11), pages 2416-2429, June.
    22. Jiang, Jiming, 1999. "On unbiasedness of the empirical BLUE and BLUP," Statistics & Probability Letters, Elsevier, vol. 41(1), pages 19-24, January.
    23. Ray Chambers & Nicola Salvati & Nikos Tzavidis, 2016. "Semiparametric small area estimation for binary outcomes with application to unemployment estimation for local authorities in the UK," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 453-479, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    2. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2010. "How to Control for Many Covariates? Reliable Estimators Based on the Propensity Score," IZA Discussion Papers 5268, Institute of Labor Economics (IZA).
    3. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    4. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    5. William Rhodes, 2010. "Heterogeneous Treatment Effects: What Does a Regression Estimate?," Evaluation Review, , vol. 34(4), pages 334-361, August.
    6. Cattaneo, Matias D., 2010. "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," Journal of Econometrics, Elsevier, vol. 155(2), pages 138-154, April.
    7. Bryan S. Graham & Keisuke Hirano, 2011. "Robustness to Parametric Assumptions in Missing Data Models," American Economic Review, American Economic Association, vol. 101(3), pages 538-543, May.
    8. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    9. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    10. Baldermann, Claudia & Salvati, Nicola & Schmid, Timo, 2016. "Robust small area estimation under spatial non-stationarity," Discussion Papers 2016/5, Free University Berlin, School of Business & Economics.
    11. Zeqin Liu & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Statistical Analysis and Evaluation of Macroeconomic Policies: A Selective Review," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201904, University of Kansas, Department of Economics, revised Mar 2019.
    12. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    13. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    14. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    15. Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," JRFM, MDPI, vol. 13(11), pages 1-24, November.
    16. Fan Li & Ashley L. Buchanan & Stephen R. Cole, 2022. "Generalizing trial evidence to target populations in non‐nested designs: Applications to AIDS clinical trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 669-697, June.
    17. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    18. Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Papers 2206.08503, arXiv.org, revised Apr 2024.
    19. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    20. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:184:y:2023:i:c:s0167947323000531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.