IDEAS home Printed from https://ideas.repec.org/a/spr/soinre/v154y2021i2d10.1007_s11205-020-02573-8.html
   My bibliography  Save this article

Measuring and Mapping Disaggregate Level Disparities in Food Consumption and Nutritional Status via Multivariate Small Area Modelling

Author

Listed:
  • Saurav Guha

    (ICAR-Indian Agricultural Statistics Research Institute)

  • Hukum Chandra

    (ICAR-Indian Agricultural Statistics Research Institute)

Abstract

Although India has progressed significantly on several health outcomes but the state of food and nutrition security in the country still requires sustained efforts to accelerate achievement. Existing data based on socio-economic surveys conducted by National Sample Survey Office (NSSO) produce precise measures of food and nutrition security status at state and national level. However, these surveys cannot be used directly to produce reliable district or further smaller domain level estimates because of small sample sizes which lead to high level of sampling variability. Decentralized administrative planning system in India demands the availability of disaggregate (e.g. district) level statistics for target oriented effective policy planning and monitoring, as food and nutrition security is often unevenly distributed among the subsets of relatively small areas. But, due to lack of district level estimates, the mapping and analyse related to food and nutrition security measures are restricted to state and national level. As a result, disaggregate level dissimilarity and variability existing in food and nutrition security are often masked. This article delineates multivariate small area estimation (SAE) technique to obtain reliable and representative estimates of food consumption and nutrition status at district level for the rural areas of state of Uttar Pradesh in India by combining latest round of available Household Consumer Expenditure Survey 2011–2012 data of NSSO and the Indian Population Census 2011. The empirical evidence indicate that the estimates generated by SAE approach are reliable and representative. Spatial maps showing district level inequality in distribution of food and nutrition security in Uttar Pradesh is also produced. The disaggregate level estimates and spatial maps of food and nutrition security are directly relevant to sustainable development goal indicator 2.1.2—severity of food insecurity. The estimates and maps of food insecurity indictors are anticipated to offer irreplaceable information to administrative decision-makers and policy experts for identifying the regions requiring more attention. Government of India has recently launched number of schemes for the benefit of rural population in the country and these estimates will be useful for fund allocation as well as in the monitoring of these schemes.

Suggested Citation

  • Saurav Guha & Hukum Chandra, 2021. "Measuring and Mapping Disaggregate Level Disparities in Food Consumption and Nutritional Status via Multivariate Small Area Modelling," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 154(2), pages 623-646, April.
  • Handle: RePEc:spr:soinre:v:154:y:2021:i:2:d:10.1007_s11205-020-02573-8
    DOI: 10.1007/s11205-020-02573-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11205-020-02573-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11205-020-02573-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Priyanka Anjoy & Hukum Chandra & Pradip Basak, 2019. "Estimation of Disaggregate-Level Poverty Incidence in Odisha Under Area-Level Hierarchical Bayes Small Area Model," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(1), pages 251-273, July.
    2. Marhuenda, Yolanda & Molina, Isabel & Morales, Domingo, 2013. "Small area estimation with spatio-temporal Fay–Herriot models," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 308-325.
    3. Hukum Chandra & Nicola Salvati & U. C. Sud, 2011. "Disaggregate-level estimates of indebtedness in the state of Uttar Pradesh in India: an application of small-area estimation technique," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2413-2432, January.
    4. Benavent, Roberto & Morales, Domingo, 2016. "Multivariate Fay–Herriot models for small area estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 372-390.
    5. Hukum Chandra, 2013. "Exploring spatial dependence in area-level random effect model for disaggregate-level crop yield estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(4), pages 823-842.
    6. Gauri Datta & Tatsuya Kubokawa & Isabel Molina & J. Rao, 2011. "Estimation of mean squared error of model-based small area estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 367-388, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelo Moretti, 2023. "Regional Public Opinions on LGBTI People Equal Opportunities in Employment: Evidence from the Eurobarometer Programme using Small Area Estimation," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 166(2), pages 413-438, April.
    2. Angelo Moretti, 2023. "Estimation of small area proportions under a bivariate logistic mixed model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3663-3684, August.
    3. Saurav Guha & Hukum Chandra, 2022. "Multivariate Small Area Modelling for Measuring Micro Level Earning Inequality: Evidence from Periodic Labour Force Survey of India," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 162(2), pages 643-663, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saurav Guha & Hukum Chandra, 2021. "Measuring disaggregate level food insecurity via multivariate small area modelling: evidence from rural districts of Uttar Pradesh, India," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(3), pages 597-615, June.
    2. Saurav Guha & Hukum Chandra, 2022. "Multivariate Small Area Modelling for Measuring Micro Level Earning Inequality: Evidence from Periodic Labour Force Survey of India," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 162(2), pages 643-663, July.
    3. Boubeta, Miguel & Lombardía, María José & Morales, Domingo, 2017. "Poisson mixed models for studying the poverty in small areas," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 32-47.
    4. Priyanka Anjoy, 2023. "Hierarchical Bayes Measurement Error Small Area Model for Estimation of Disaggregated Level Workers Mobility Pattern in India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(2), pages 339-361, June.
    5. Roberto Benavent & Domingo Morales, 2021. "Small area estimation under a temporal bivariate area-level linear mixed model with independent time effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 195-222, March.
    6. Benavent, Roberto & Morales, Domingo, 2016. "Multivariate Fay–Herriot models for small area estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 372-390.
    7. Yegnanew A. Shiferaw, 2023. "Mapping Disaggregate-Level Agricultural Households in South Africa Using a Hierarchical Bayes Small Area Estimation Approach," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    8. Md Jamal Hossain & Sumonkanti Das & Hukum Chandra & Mohammad Amirul Islam, 2020. "Disaggregate level estimates and spatial mapping of food insecurity in Bangladesh by linking survey and census data," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-16, April.
    9. Jan Pablo Burgard & María Dolores Esteban & Domingo Morales & Agustín Pérez, 2020. "A Fay–Herriot model when auxiliary variables are measured with error," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 166-195, March.
    10. Priyanka Anjoy & Hukum Chandra & Pradip Basak, 2019. "Estimation of Disaggregate-Level Poverty Incidence in Odisha Under Area-Level Hierarchical Bayes Small Area Model," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(1), pages 251-273, July.
    11. María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2023. "Small area estimation of average compositions under multivariate nested error regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 651-676, June.
    12. Armalia Desiyanti & Irlandia Ginanjar & Toni Toharudin, 2022. "Application of an Empirical Best Linear Unbiased Prediction Fay–Herriot (EBLUP-FH) Multivariate Method with Cluster Information to Estimate Average Household Expenditure," Mathematics, MDPI, vol. 11(1), pages 1-25, December.
    13. María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2020. "Small area estimation of proportions under area-level compositional mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 793-818, September.
    14. Jan Pablo Burgard & Domingo Morales & Anna-Lena Wölwer, 2022. "Small area estimation of socioeconomic indicators for sampled and unsampled domains," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 287-314, June.
    15. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
    16. Iacus Stefano M. & Salini Silvia & Siletti Elena & Porro Giuseppe, 2020. "Controlling for Selection Bias in Social Media Indicators through Official Statistics: a Proposal," Journal of Official Statistics, Sciendo, vol. 36(2), pages 315-338, June.
    17. Tomasz Ża̧dło, 2015. "On longitudinal moving average model for prediction of subpopulation total," Statistical Papers, Springer, vol. 56(3), pages 749-771, August.
    18. Angelo Moretti, 2023. "Estimation of small area proportions under a bivariate logistic mixed model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3663-3684, August.
    19. Kulshreshtha, Shobhit, 2024. "Access to Information and Adoption of New Farming Practices: A Spatial Analysis," GLO Discussion Paper Series 1435, Global Labor Organization (GLO).
    20. J. N. K. Rao, 2015. "Inferential Issues In Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:soinre:v:154:y:2021:i:2:d:10.1007_s11205-020-02573-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.