IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0230906.html
   My bibliography  Save this article

Disaggregate level estimates and spatial mapping of food insecurity in Bangladesh by linking survey and census data

Author

Listed:
  • Md Jamal Hossain
  • Sumonkanti Das
  • Hukum Chandra
  • Mohammad Amirul Islam

Abstract

Food insecurity is an important and persistent social issue in Bangladesh. Existing data based on socio-economic surveys produce divisional and nationally representative food insecurity estimates but these surveys cannot be used directly to generate reliable district level estimates. We deliberate small area estimation (SAE) approach for estimating the food insecurity status at district level in Bangladesh by combining Household Income and Expenditure Survey 2010 with the Bangladesh Population and Housing Census 2011. The food insecurity prevalence, gap and severity status have been determined based on per capita calorie intake with a threshold of 2122 kcal per day, as specified by the Bangladesh Bureau of Statistics.The results show that the food insecurity estimates generated from SAE are precise and representative of the spatial heterogeneity in the socioeconomic conditions than do the direct estimates. The maps showing the food insecurity indicators by district indicate that a number of districts in northern and southern parts are more vulnerable in terms of all indicators. These maps will guide the government, international organizations, policymakers and development partners for efficient resource allocation.

Suggested Citation

  • Md Jamal Hossain & Sumonkanti Das & Hukum Chandra & Mohammad Amirul Islam, 2020. "Disaggregate level estimates and spatial mapping of food insecurity in Bangladesh by linking survey and census data," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-16, April.
  • Handle: RePEc:plo:pone00:0230906
    DOI: 10.1371/journal.pone.0230906
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230906
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0230906&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0230906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Foster, James & Greer, Joel & Thorbecke, Erik, 1984. "A Class of Decomposable Poverty Measures," Econometrica, Econometric Society, vol. 52(3), pages 761-766, May.
    2. Nikos Tzavidis & Nicola Salvati & Monica Pratesi & Ray Chambers, 2008. "M-quantile models with application to poverty mapping," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(3), pages 393-411, July.
    3. Hukum Chandra & Nicola Salvati & U. C. Sud, 2011. "Disaggregate-level estimates of indebtedness in the state of Uttar Pradesh in India: an application of small-area estimation technique," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2413-2432, January.
    4. Sumonkanti Das & Ray Chambers, 2017. "Robust mean‐squared error estimation for poverty estimates based on the method of Elbers, Lanjouw and Lanjouw," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1137-1161, October.
    5. Hukum Chandra, 2013. "Exploring spatial dependence in area-level random effect model for disaggregate-level crop yield estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(4), pages 823-842.
    6. Chris Elbers & Jean O. Lanjouw & Peter Lanjouw, 2003. "Micro--Level Estimation of Poverty and Inequality," Econometrica, Econometric Society, vol. 71(1), pages 355-364, January.
    7. Sumonkanti Das & Stephen Haslett, 2019. "A Comparison of Methods for Poverty Estimation in Developing Countries," International Statistical Review, International Statistical Institute, vol. 87(2), pages 368-392, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sumonkanti Das & Syed Abul Basher & Bernard Baffour & Penny Godwin & Alice Richardson & Salim Rashid, 2024. "Improved estimates of child malnutrition trends in Bangladesh using remote-sensed data," Journal of Population Economics, Springer;European Society for Population Economics, vol. 37(4), pages 1-37, December.
    2. Saurav Guha & Hukum Chandra, 2021. "Measuring disaggregate level food insecurity via multivariate small area modelling: evidence from rural districts of Uttar Pradesh, India," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(3), pages 597-615, June.
    3. GIBSON, John & ZHANG, Xiaoxuan & PARK, Albert & YI, Jiang & XI, Li, 2024. "Remotely measuring rural economic activity and poverty : Do we just need better sensors?," CEI Working Paper Series 2023-08, Center for Economic Institutions, Institute of Economic Research, Hitotsubashi University.
    4. Mst. Maxim Parvin Mitu & Khaleda Islam & Sneha Sarwar & Masum Ali & Md. Ruhul Amin, 2022. "Spatial Differences in Diet Quality and Economic Vulnerability to Food Insecurity in Bangladesh: Results from the 2016 Household Income and Expenditure Survey," Sustainability, MDPI, vol. 14(9), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabel Molina & Paul Corral & Minh Nguyen, 2022. "Estimation of poverty and inequality in small areas: review and discussion," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1143-1166, December.
    2. Yolanda Marhuenda & Isabel Molina & Domingo Morales & J. N. K. Rao, 2017. "Poverty mapping in small areas under a twofold nested error regression model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1111-1136, October.
    3. Stefano Marchetti & Maciej Beręsewicz & Nicola Salvati & Marcin Szymkowiak & Łukasz Wawrowski, 2018. "The use of a three‐level M‐quantile model to map poverty at local administrative unit 1 in Poland," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1077-1104, October.
    4. Saurav Guha & Hukum Chandra, 2021. "Measuring disaggregate level food insecurity via multivariate small area modelling: evidence from rural districts of Uttar Pradesh, India," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(3), pages 597-615, June.
    5. Tomoki Fujii, 2013. "Geographic decomposition of inequality in health and wealth: evidence from Cambodia," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 11(3), pages 373-392, September.
    6. Channing Arndt & Azhar M. Hussain & Vincenzo Salvucci & Finn Tarp & Lars Peter Østerdal, 2016. "Poverty Mapping Based on First‐Order Dominance with an Example from Mozambique," Journal of International Development, John Wiley & Sons, Ltd., vol. 28(1), pages 3-21, January.
    7. Guadarrama Sanz, Maria & Rao, J. N. K., 2015. "A Comparison of Small Area Estimation Methods for Poverty Mapping," DES - Working Papers. Statistics and Econometrics. WS ws1505, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Cazzuffi, Chiara & Pereira-López, Mariana & Soloaga, Isidro, 2017. "Local poverty reduction in Chile and Mexico: The role of food manufacturing growth," Food Policy, Elsevier, vol. 68(C), pages 160-185.
    9. Bhuiyan, M. Kamruj Jaman & Hossain, M. Jamal & Islam, Mohammad Amirul & Imam, M. Farouq & Quddus, Md. Abdul, 2020. "Small Area Estimation Of Nutritional Status Of Under-Five Children In Sylhet Division: An M-Quantile Approach," Bangladesh Journal of Agricultural Economics, Bangladesh Agricultural University, vol. 41(01), July.
    10. Sumonkanti Das & Syed Abul Basher & Bernard Baffour & Penny Godwin & Alice Richardson & Salim Rashid, 2024. "Improved estimates of child malnutrition trends in Bangladesh using remote-sensed data," Journal of Population Economics, Springer;European Society for Population Economics, vol. 37(4), pages 1-37, December.
    11. Walter, Paul & Groß, Markus & Schmid, Timo & Tzavidis, Nikos, 2017. "Estimation of linear and non-linear indicators using interval censored income data," Discussion Papers 2017/22, Free University Berlin, School of Business & Economics.
    12. Partha Lahiri & Jiraphan Suntornchost, 2020. "A general Bayesian approach to meet different inferential goals in poverty research for small areas," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 237-253, August.
    13. Brocker, Johannes, 2005. "Necessary and unnecessary parameter restrictions for CDES demand systems," Conference papers 331358, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Roberto Benavent & Domingo Morales, 2021. "Small area estimation under a temporal bivariate area-level linear mixed model with independent time effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 195-222, March.
    15. Daniel Mont & Cuong Nguyen, 2018. "Spatial Variation in the Poverty Gap Between People With and Without Disabilities: Evidence from Vietnam," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 137(2), pages 745-763, June.
    16. Daniel, Mont & Nguyen, Cuong, 2013. "Spatial Variation in the Disability-Poverty Correlation: Evidence from Vietnam," MPRA Paper 48659, University Library of Munich, Germany.
    17. Christophe Muller & Sami Bibi, 2006. "Focused Targeting against Poverty Evidence from Tunisia," IDEP Working Papers 0602, Institut d'economie publique (IDEP), Marseille, France, revised Apr 2006.
    18. Nguyen Viet Cuong & Minh Thu Pham & Nguyet Pham Minh & Vu Thieu & Duong Toan, 2007. "Poverty Targeting and Impact of a Governmental Micro-credit Program in Vietnam," Working Papers PMMA 2007-29, PEP-PMMA.
    19. Chandra, Hukum & Salvati, Nicola & Chambers, Ray, 2018. "Small area estimation under a spatially non-linear model," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 19-38.
    20. Rojas-Perilla, Natalia & Pannier, Sören & Schmid, Timo & Tzavidis, Nikos, 2017. "Data-driven transformations in small area estimation," Discussion Papers 2017/30, Free University Berlin, School of Business & Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0230906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.