IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v83y2019icp394-405.html
   My bibliography  Save this article

A moving blocks empirical likelihood method for panel linear fixed effects models with serial correlations and cross-sectional dependences

Author

Listed:
  • Qiu, Jin
  • Ma, Qing
  • Wu, Lang

Abstract

To simultaneously deal with serial correlations and cross-sectional dependences for a panel linear fixed effects model, we propose a new approach based on an extended score vector and a moving blocks empirical likelihood method. Large sample properties of the proposed method are studied. Simulation results show that the new method works well under the situations of either strong or weak cross-sectional dependences, and the method performs better than the methods in Gonçalves (2011) and Vogelsang (2012). The proposed method is also applied to an application in carbon emission, and the results show that urbanization has a significant effect on carbon emission. Moreover, the effect varies in different stage of urbanization.

Suggested Citation

  • Qiu, Jin & Ma, Qing & Wu, Lang, 2019. "A moving blocks empirical likelihood method for panel linear fixed effects models with serial correlations and cross-sectional dependences," Economic Modelling, Elsevier, vol. 83(C), pages 394-405.
  • Handle: RePEc:eee:ecmode:v:83:y:2019:i:c:p:394-405
    DOI: 10.1016/j.econmod.2019.09.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999318318091
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2019.09.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lillard, Lee A & Willis, Robert J, 1978. "Dynamic Aspects of Earning Mobility," Econometrica, Econometric Society, vol. 46(5), pages 985-1012, September.
    2. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    3. Vogelsang, Timothy J., 2012. "Heteroskedasticity, autocorrelation, and spatial correlation robust inference in linear panel models with fixed-effects," Journal of Econometrics, Elsevier, vol. 166(2), pages 303-319.
    4. Zhang, Junhua & Feng, Sanying & Li, Gaorong & Lian, Heng, 2011. "Empirical likelihood inference for partially linear panel data models with fixed effects," Economics Letters, Elsevier, vol. 113(2), pages 165-167.
    5. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    6. Xiuli Wang & Gaorong Li & Lu Lin, 2011. "Empirical likelihood inference for semi-parametric varying-coefficient partially linear EV models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(2), pages 171-185, March.
    7. Li, Daoji & Pan, Jianxin, 2013. "Empirical likelihood for generalized linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 63-73.
    8. Jin Qiu & Lang Wu, 2015. "A moving blocks empirical likelihood method for longitudinal data," Biometrics, The International Biometric Society, vol. 71(3), pages 616-624, September.
    9. Frees, Edward W., 1995. "Assessing cross-sectional correlation in panel data," Journal of Econometrics, Elsevier, vol. 69(2), pages 393-414, October.
    10. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    11. Jerry Coakley & Ana-Maria Fuertes & Ron Smith, 2002. "A Principal Components Approach to Cross-Section Dependence in Panels," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 B5-3, International Conferences on Panel Data.
    12. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    13. Galbraith, John W. & Zinde-Walsh, Victoria, 1995. "Transforming the error-components model for estimation with general ARMA disturbances," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 349-355.
    14. de Jong, Robert M., 1997. "Central Limit Theorems for Dependent Heterogeneous Random Variables," Econometric Theory, Cambridge University Press, vol. 13(3), pages 353-367, June.
    15. Yongsong Qin & Jianjun Li, 2011. "Empirical likelihood for partially linear models with missing responses at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 497-511.
    16. Baltagi, Badi H. & Li, Qi, 1994. "Estimating Error Component Models With General MA(q) Disturbances," Econometric Theory, Cambridge University Press, vol. 10(2), pages 396-408, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Mafizur Rahman & Khosrul Alam, 2022. "CO 2 Emissions in Asia–Pacific Region: Do Energy Use, Economic Growth, Financial Development, and International Trade Have Detrimental Effects?," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    2. Wojciech Charemza & Svetlana Makarova & Krzysztof Rybiński, 2023. "Anti-pandemic restrictions, uncertainty and sentiment in seven countries," Economic Change and Restructuring, Springer, vol. 56(1), pages 1-27, February.
    3. Lorente-Rubio, C. & García-Alcaraz, J.L. & Sáenz-Diez Muro, J.C. & Martínez-Cámara, E. & Bruzzone, A. & Blanco-Fernández, J., 2024. "Scenarios for replacement of electric resistive space heating by a geothermal heat pump - Environmental amortization," Renewable Energy, Elsevier, vol. 227(C).
    4. Rahman, Mohammad Mafizur & Alam, Khosrul, 2022. "Effects of corruption, technological innovation, globalisation, and renewable energy on carbon emissions in Asian countries," Utilities Policy, Elsevier, vol. 79(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bertoli, Simone & Fernández-Huertas Moraga, Jesús, 2013. "Multilateral resistance to migration," Journal of Development Economics, Elsevier, vol. 102(C), pages 79-100.
    2. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    3. Naima Chrid & Sami Saafi & Mohamed Chakroun, 2021. "Export Upgrading and Economic Growth: a Panel Cointegration and Causality Analysis," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(2), pages 811-841, June.
    4. Moscone, F. & Tosetti, E., 2010. "Testing for error cross section independence with an application to US health expenditure," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 283-291, September.
    5. Bin Peng & Giovanni Forchini, 2012. "Consistent Estimation of Panel Data Models with a Multi-factor Error Structure," School of Economics Discussion Papers 0112, School of Economics, University of Surrey.
    6. Su, Liangjun & Jin, Sainan, 2012. "Sieve estimation of panel data models with cross section dependence," Journal of Econometrics, Elsevier, vol. 169(1), pages 34-47.
    7. Alexander Chudik & M. Hashem Pesaran, 2013. "Large panel data models with cross-sectional dependence: a survey," Globalization Institute Working Papers 153, Federal Reserve Bank of Dallas.
    8. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    9. Arnab Bhattacharjee & Sean Holly, 2011. "Structural interactions in spatial panels," Empirical Economics, Springer, vol. 40(1), pages 69-94, February.
    10. Alexandra Soberon & Irene D’Hers, 2020. "The Environmental Kuznets Curve: A Semiparametric Approach with Cross-Sectional Dependence," JRFM, MDPI, vol. 13(11), pages 1-23, November.
    11. Su, Liangjun & Yang, Zhenlin, 2015. "QML estimation of dynamic panel data models with spatial errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 230-258.
    12. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2012. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model," Journal of Econometrics, Elsevier, vol. 170(1), pages 164-177.
    13. Hidalgo, Javier & Schafgans, Marcia, 2017. "Inference and testing breaks in large dynamic panels with strong cross sectional dependence," Journal of Econometrics, Elsevier, vol. 196(2), pages 259-274.
    14. Arnab Bhattacharjee & Sean Holly, 2011. "Structural interactions in spatial panels," Empirical Economics, Springer, vol. 40(1), pages 69-94, February.
    15. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.
    16. Elisa Cavatorta & Ron P. Smith, 2017. "Factor Models in Panels with Cross-sectional Dependence: An Application to the Extended SIPRI Military Expenditure Data," Defence and Peace Economics, Taylor & Francis Journals, vol. 28(4), pages 437-456, July.
    17. Hamit-Haggar, Mahamat, 2012. "Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective," Energy Economics, Elsevier, vol. 34(1), pages 358-364.
    18. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
    19. Alberto Montagnoli & Jun Nagaysu, 2013. "An investigation of housing affordability in the UK regions," Working Papers 1316, University of Strathclyde Business School, Department of Economics.
    20. Holly, Sean & Pesaran, M. Hashem & Yamagata, Takashi, 2010. "A spatio-temporal model of house prices in the USA," Journal of Econometrics, Elsevier, vol. 158(1), pages 160-173, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:83:y:2019:i:c:p:394-405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.