IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v28y2009i6p555-580.html
   My bibliography  Save this article

Parametric Nonlinear Regression with Endogenous Switching

Author

Listed:
  • Joseph Terza

Abstract

Based on the insightful work of Olsen (1980) for the linear context, a generic and unifying framework is developed that affords a simple extension of the classical method of Heckman (1974, 1976, 1978, 1979) to a broad class of nonlinear regression models involving endogenous switching and its two most common incarnations, endogenous sample selection and endogenous treatment effects. The approach should be appealing to applied researchers for three reasons. First, econometric applications involving endogenous switching abound. Secondly, the approach requires neither linearity of the regression function nor full parametric specification of the model. It can, in fact, be applied under the minimal parametric assumptions—i.e., specification of only the conditional means of the outcome and switching variables. Finally, it is amenable to relatively straightforward estimation methods. Examples of applications of the method are discussed.

Suggested Citation

  • Joseph Terza, 2009. "Parametric Nonlinear Regression with Endogenous Switching," Econometric Reviews, Taylor & Francis Journals, vol. 28(6), pages 555-580.
  • Handle: RePEc:taf:emetrv:v:28:y:2009:i:6:p:555-580
    DOI: 10.1080/07474930802473751
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930802473751
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474930802473751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdul-Rahaman, Awal & Abdulai, Awudu, 2018. "Do farmer groups impact on farm yield and efficiency of smallholder farmers? Evidence from rice farmers in northern Ghana," Food Policy, Elsevier, vol. 81(C), pages 95-105.
    2. Terza, Joseph V. & Basu, Anirban & Rathouz, Paul J., 2008. "Two-stage residual inclusion estimation: Addressing endogeneity in health econometric modeling," Journal of Health Economics, Elsevier, vol. 27(3), pages 531-543, May.
    3. Nigel Key & William D. McBride, 2014. "Sub-therapeutic Antibiotics and the Efficiency of U.S. Hog Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(3), pages 831-850.
    4. Carolina Crispin-Fory & Ligia Alba Melo-Becerra & Diego Alexander Restrepo-Tobón & Diego Vásquez-Escobar, 2023. "Eficiencia y solidez financiera de las Instituciones prestadoras de Servicio de Salud (IPS) en Colombia," Borradores de Economia 1248, Banco de la Republica de Colombia.
    5. Andrew J. Epstein & Jonathan D. Ketcham, 2014. "Information technology and agency in physicians' prescribing decisions," RAND Journal of Economics, RAND Corporation, vol. 45(2), pages 422-448, June.
    6. Park, Timothy A., 2014. "Assessing Performance Impacts in Food Retail Distribution Systems: A Stochastic Frontier Model Correcting for Sample Selection," Agricultural and Resource Economics Review, Cambridge University Press, vol. 43(3), pages 373-389, December.
    7. Boris E. Bravo‐Ureta & Mario González‐Flores & William Greene & Daniel Solís, 2021. "Technology and Technical Efficiency Change: Evidence from a Difference in Differences Selectivity Corrected Stochastic Production Frontier Model," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(1), pages 362-385, January.
    8. Hung-pin Lai, 2015. "Maximum likelihood estimation of the stochastic frontier model with endogenous switching or sample selection," Journal of Productivity Analysis, Springer, vol. 43(1), pages 105-117, February.
    9. Fitzenberger, Bernd & Furdas, Marina & Sajons, Christoph, 2016. "End-of-year spending and the long-run employment effects of training programs for the unemployed," ZEW Discussion Papers 16-084, ZEW - Leibniz Centre for European Economic Research.
    10. Massimiliano Bratti & Alfonso Miranda, 2011. "Endogenous treatment effects for count data models with endogenous participation or sample selection," Health Economics, John Wiley & Sons, Ltd., vol. 20(9), pages 1090-1109, September.
    11. Bert Lenaerts & Yann de Mey & Matty Demont, 2022. "Revisiting multi‐stage models for upstream technology adoption: Evidence from rapid generation advance in rice breeding," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 277-300, February.
    12. Keay, Myoung-Jin, 2016. "Partial copula methods for models with multiple discrete endogenous explanatory variables and sample selection," Economics Letters, Elsevier, vol. 144(C), pages 85-87.
    13. William Greene, 2010. "A stochastic frontier model with correction for sample selection," Journal of Productivity Analysis, Springer, vol. 34(1), pages 15-24, August.
    14. Wooldridge, Jeffrey M., 2014. "Quasi-maximum likelihood estimation and testing for nonlinear models with endogenous explanatory variables," Journal of Econometrics, Elsevier, vol. 182(1), pages 226-234.
    15. Sung, Jae-hoon & Miranowski, John A., 2016. "Information technologies and field-level chemical use for corn production," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235858, Agricultural and Applied Economics Association.
    16. Gellman, Jacob & Walls, Margaret A. & Wibbenmeyer, Matthew, 2023. "Welfare Losses from Wildfire Smoke: Evidence from Daily Outdoor Recreation Data," RFF Working Paper Series 23-31, Resources for the Future.
    17. Rabbitt, Matthew P., 2013. "Measuring the Effect of Supplemental Nutrition Assistance Program Participation on Food Insecurity Using a Behavioral Rasch Selection Model," UNCG Economics Working Papers 13-20, University of North Carolina at Greensboro, Department of Economics.
    18. Takuya Hasebe, 2018. "Treatment effect estimators for count data models," Health Economics, John Wiley & Sons, Ltd., vol. 27(11), pages 1868-1873, November.
    19. Boris E. Bravo-Ureta, 2014. "Stochastic frontiers, productivity effects and development projects," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 51-58.
    20. Terza, Joseph V. & Tsai, Wei-Der, 2006. "Censored Probit Estimation with Correlation near the Boundary: A Useful Reparameteriztion," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 2(1), pages 1-12.
    21. Matthew P. Rabbitt, 2017. "Estimating Treatment Effects in the Presence of Correlated Binary Outcomes and Contemporaneous Selection," 2017 Stata Conference 23, Stata Users Group.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tindara Addabbo & Anna Maccagnan & Carmen Llorca-Rodríguez & Rosa García-Fernández, 2010. "Income distribution and the effect of the financial crisis on the Italian and Spanish labour markets," Department of Economics 0639, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    2. Walter Beckert, 2015. "Choice in the Presence of Experts," Birkbeck Working Papers in Economics and Finance 1503, Birkbeck, Department of Economics, Mathematics & Statistics.
    3. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    4. Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Xiaohong Chen & Roger Koenker & Zhijie Xiao, 2009. "Copula-based nonlinear quantile autoregression," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 50-67, January.
    6. Magnus, Jan R., 2007. "The Asymptotic Variance Of The Pseudo Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 23(5), pages 1022-1032, October.
    7. Chor-Yiu Sin, 2014. "Qmle Of A Standard Exponential Acd Model: Asymptotic Distribution And Residual Correlation," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 1-10.
    8. Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
    9. Coenen, Gunter & Wieland, Volker, 2005. "A small estimated euro area model with rational expectations and nominal rigidities," European Economic Review, Elsevier, vol. 49(5), pages 1081-1104, July.
    10. Chen, Xiaohong & Liao, Zhipeng & Sun, Yixiao, 2014. "Sieve inference on possibly misspecified semi-nonparametric time series models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 639-658.
    11. Manuel Gebetsberger & Jakob W. Messner & Georg J. Mayr & Achim Zeileis, 2017. "Estimation methods for non-homogeneous regression models: Minimum continuous ranked probability score vs. maximum likelihood," Working Papers 2017-23, Faculty of Economics and Statistics, Universität Innsbruck.
    12. David T. Frazier & Bonsoo Koo, 2020. "Indirect Inference for Locally Stationary Models," Monash Econometrics and Business Statistics Working Papers 30/20, Monash University, Department of Econometrics and Business Statistics.
    13. Arie Preminger & Uri Ben-zion & David Wettstein, 2007. "The extended switching regression model: allowing for multiple latent state variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(7), pages 457-473.
    14. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    15. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
    16. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    17. Hommes, Cars & Zhu, Mei, 2014. "Behavioral learning equilibria," Journal of Economic Theory, Elsevier, vol. 150(C), pages 778-814.
    18. Takagi, Shingo, 1999. "Bias in maximum likelihood estimator of disequilibrium and sample selection model with error-ridden observations," Economics Letters, Elsevier, vol. 64(2), pages 161-165, August.
    19. Hannes Böhm & Julia Schaumburg & Lena Tonzer, 2022. "Financial Linkages and Sectoral Business Cycle Synchronization: Evidence from Europe," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 70(4), pages 698-734, December.
    20. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:28:y:2009:i:6:p:555-580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.