IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v144y2016icp85-87.html
   My bibliography  Save this article

Partial copula methods for models with multiple discrete endogenous explanatory variables and sample selection

Author

Listed:
  • Keay, Myoung-Jin

Abstract

We present a flexible parametric approach for models with multiple discrete endogenous explanatory variables (EEV) with finite support. The joint distributions of each EEV and structural error are modeled by using copulae and their marginal distributions, but the ones among the EEV’s are left unspecified. Our partial copula approach can be applied in any models with discrete EEV’s. It can be also used for correcting selection bias and finding average treatment effects.

Suggested Citation

  • Keay, Myoung-Jin, 2016. "Partial copula methods for models with multiple discrete endogenous explanatory variables and sample selection," Economics Letters, Elsevier, vol. 144(C), pages 85-87.
  • Handle: RePEc:eee:ecolet:v:144:y:2016:i:c:p:85-87
    DOI: 10.1016/j.econlet.2016.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176516301203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2016.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    2. Rainer Winkelmann, 2012. "Copula Bivariate Probit Models: With An Application To Medical Expenditures," Health Economics, John Wiley & Sons, Ltd., vol. 21(12), pages 1444-1455, December.
    3. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 655-679.
    4. Murray D. Smith, 2003. "Modelling sample selection using Archimedean copulas," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 99-123, June.
    5. Stephen P. Jenkins & Lorenzo Cappellari & Peter Lynn & Annette Jäckle & Emanuela Sala, 2006. "Patterns of consent: evidence from a general household survey," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 701-722, October.
    6. Joseph Terza, 2009. "Parametric Nonlinear Regression with Endogenous Switching," Econometric Reviews, Taylor & Francis Journals, vol. 28(6), pages 555-580.
    7. Steffen Grønneberg & Nils Lid Hjort, 2014. "The Copula Information Criteria," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 436-459, June.
    8. Sungho Park & Sachin Gupta, 2012. "Handling Endogenous Regressors by Joint Estimation Using Copulas," Marketing Science, INFORMS, vol. 31(4), pages 567-586, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bérengère Davin & Xavier Joutard & Alain Paraponaris, 2019. ""If You Were Me": Proxy Respondents' Biases in Population Health Surveys," Working Papers halshs-02036434, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wooldridge, Jeffrey M., 2014. "Quasi-maximum likelihood estimation and testing for nonlinear models with endogenous explanatory variables," Journal of Econometrics, Elsevier, vol. 182(1), pages 226-234.
    2. Jörg Schwiebert, 2016. "Multinomial choice models based on Archimedean copulas," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 333-354, July.
    3. McGovern, Mark E. & Canning, David & Bärnighausen, Till, 2018. "Accounting for non-response bias using participation incentives and survey design: An application using gift vouchers," Economics Letters, Elsevier, vol. 171(C), pages 239-244.
    4. Conti, Gabriella & Poupakis, Stavros & Ekamper, Peter & Bijwaard, Govert E. & Lumey, L.H., 2024. "Severe prenatal shocks and adolescent health: Evidence from the Dutch Hunger Winter," Economics & Human Biology, Elsevier, vol. 53(C).
    5. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    6. Richard Blundell & Monica Costa Dias, 2009. "Alternative Approaches to Evaluation in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 44(3).
    7. Joseph G. Altonji & Hidehiko Ichimura & Taisuke Otsu, 2012. "Estimating Derivatives in Nonseparable Models With Limited Dependent Variables," Econometrica, Econometric Society, vol. 80(4), pages 1701-1719, July.
    8. Fitzenberger, Bernd & Furdas, Marina & Sajons, Christoph, 2016. "End-of-year spending and the long-run employment effects of training programs for the unemployed," Freiburg Discussion Papers on Constitutional Economics 16/08, Walter Eucken Institut e.V..
    9. Mi Hyun Lee & Sang Pil Han & Sungho Park & Wonseok Oh, 2023. "Positive Demand Spillover of Popular App Adoption: Implications for Platform Owners’ Management of Complements," Information Systems Research, INFORMS, vol. 34(3), pages 961-995, September.
    10. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2016. "Endogeneity in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 190(2), pages 280-288.
    11. Manuel Arellano & Stéphane Bonhomme, 2017. "Sample Selection in Quantile Regression: A Survey," Working Papers wp2018_1702, CEMFI.
    12. Blundell, Richard & Powell, James L., 2007. "Censored regression quantiles with endogenous regressors," Journal of Econometrics, Elsevier, vol. 141(1), pages 65-83, November.
    13. Manuel Arellano & Stéphane Bonhomme, 2017. "Sample Selection in Quantile Regression: A Survey," Working Papers wp2017_1702, CEMFI.
    14. Jinyong Hahn & Zhipeng Liao & Geert Ridder & Ruoyao Shi, 2021. "The Influence Function of Semiparametric Two-step Estimators with Estimated Control Variables," Working Papers 202202, University of California at Riverside, Department of Economics.
    15. Hasebe, Takuya & Vijverberg, Wim P., 2012. "A Flexible Sample Selection Model: A GTL-Copula Approach," IZA Discussion Papers 7003, Institute of Labor Economics (IZA).
    16. Seonho Shin, 2022. "To work or not? Wages or subsidies?: Copula-based evidence of subsidized refugees’ negative selection into employment," Empirical Economics, Springer, vol. 63(4), pages 2209-2252, October.
    17. Marra, Giampiero & Wyszynski, Karol, 2016. "Semi-parametric copula sample selection models for count responses," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 110-129.
    18. Martin Huber & Anna Solovyeva, 2020. "Direct and Indirect Effects under Sample Selection and Outcome Attrition," Econometrics, MDPI, vol. 8(4), pages 1-25, December.
    19. Porgo, Mohamed & Kuwornu, John K.M. & Zahonogo, Pam & Jatoe, John Baptist D. & Egyir, Irene S., 2018. "Credit constraints and cropland allocation decisions in rural Burkina Faso," Land Use Policy, Elsevier, vol. 70(C), pages 666-674.
    20. Isabell Lenz & Hauke A. Wetzel & Maik Hammerschmidt, 2017. "Can doing good lead to doing poorly? Firm value implications of CSR in the face of CSI," Journal of the Academy of Marketing Science, Springer, vol. 45(5), pages 677-697, September.

    More about this item

    Keywords

    Copula; Endogenous explanatory variable; Sample selection;
    All these keywords.

    JEL classification:

    • C34 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Truncated and Censored Models; Switching Regression Models
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:144:y:2016:i:c:p:85-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.