IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i15d10.1007_s11269-024-03953-2.html
   My bibliography  Save this article

Improving Sub-daily Runoff Forecast Based on the Multi-objective Optimized Extreme Learning Machine for Reservoir Operation

Author

Listed:
  • Wenhao Jia

    (Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources
    Pearl River Water Resources Research Institute)

  • Mufeng Chen

    (Helmholtz Centre for Environmental Research – UFZ)

  • Hongyi Yao

    (The University of Hong Kong)

  • Yixu Wang

    (Pearl River Water Resources Commission of Ministry of Water Resources)

  • Sen Wang

    (Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources
    Pearl River Water Resources Research Institute)

  • Xiaokuan Ni

    (Pudong New Area Emergency Management Bureau)

Abstract

Data-driven models have shown remarkable achievements in runoff prediction, but their simulation results can be overly homogenized due to the distillation of all simulation aspects into the loss function. This can make the models unreliable for predicting extreme events, leading to issues subsequent reservoir operations. This paper proposes a novel data-driven hybrid machine-learning model called the multi-objective optimized extreme learning machine (MOELM) to provide an accurate runoff forecasting for reservoirs. The objective is to minimize simulation error, with an additional focus on flood deviation. The results show that: (1) MOELM can improve flood events prediction, reducing the root mean square error (RMSE) for flood series by 5.27% without increasing the overall prediction error at Longtan reservoir. Compared to hydrological models, MOELM can reduce operational risk with lower reservoir maximum outflow and water level during typical flood events, and it can potentially increase hydropower generation at Longtan reservoir by 130 million kW·h. (2) MOELM can be transferred to other cross-sections with excellent performances, demonstrating hydrological transferability from fluctuation to flatness in regime. (3) Partial mutual information is introduced for input variable selection, with discharge at lag times t-4, t-1, t-8, and t-2 being vital to the prediction model. Our model is practical, requiring no additional input, fitting the hydrological runoff holistically, and capable of providing accurate flood forecasts.

Suggested Citation

  • Wenhao Jia & Mufeng Chen & Hongyi Yao & Yixu Wang & Sen Wang & Xiaokuan Ni, 2024. "Improving Sub-daily Runoff Forecast Based on the Multi-objective Optimized Extreme Learning Machine for Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 6173-6189, December.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:15:d:10.1007_s11269-024-03953-2
    DOI: 10.1007/s11269-024-03953-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03953-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03953-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramtin Moeini & Kamran Nasiri & Seyed Hossein Hosseini, 2024. "Predicting the Water Inflow Into the Dam Reservoir Using the Hybrid Intelligent GP-ANN- NSGA-II Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4137-4159, September.
    2. Zengchuan Dong & Xiaokuan Ni & Mufeng Chen & Hongyi Yao & Wenhao Jia & Jiaxing Zhong & Li Ren, 2021. "Time-varying Decision-making Method for Multi-objective Regulation of Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3411-3430, August.
    3. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "Streamflow Prediction Utilizing Deep Learning and Machine Learning Algorithms for Sustainable Water Supply Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3227-3241, June.
    4. Peiman Parisouj & Hamid Mohebzadeh & Taesam Lee, 2020. "Employing Machine Learning Algorithms for Streamflow Prediction: A Case Study of Four River Basins with Different Climatic Zones in the United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4113-4131, October.
    5. Shahab Araghinejad & Nima Fayaz & Seyed-Mohammad Hosseini-Moghari, 2018. "Development of a Hybrid Data Driven Model for Hydrological Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3737-3750, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramtin Moeini & Kamran Nasiri & Seyed Hossein Hosseini, 2024. "Predicting the Water Inflow Into the Dam Reservoir Using the Hybrid Intelligent GP-ANN- NSGA-II Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4137-4159, September.
    2. Mina Khosravi & Abbas Afshar & Amir Molajou, 2022. "Decision Tree-Based Conditional Operation Rules for Optimal Conjunctive Use of Surface and Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2013-2025, April.
    3. Anas Mahmood Al-Juboori, 2021. "A Hybrid Model to Predict Monthly Streamflow Using Neighboring Rivers Annual Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 729-743, January.
    4. Yuri B. Kirsta & Ol’ga V. Lovtskaya, 2021. "Good-quality Long-term Forecast of Spring-summer Flood Runoff for Mountain Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 811-825, February.
    5. Liu, Tundong & Gao, Fengqiang & Zhou, Weihong & Yan, Yuyue, 2024. "Density control in pedestrian evacuation with incorrect feedback information: Data correction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    6. Sajjad M. Vatanchi & Hossein Etemadfard & Mahmoud F. Maghrebi & Rouzbeh Shad, 2023. "A Comparative Study on Forecasting of Long-term Daily Streamflow using ANN, ANFIS, BiLSTM and CNN-GRU-LSTM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4769-4785, September.
    7. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    8. Zhuoqi Wang & Yuan Si & Haibo Chu, 2022. "Daily Streamflow Prediction and Uncertainty Using a Long Short-Term Memory (LSTM) Network Coupled with Bootstrap," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4575-4590, September.
    9. Rana Muhammad Adnan Ikram & Leonardo Goliatt & Ozgur Kisi & Slavisa Trajkovic & Shamsuddin Shahid, 2022. "Covariance Matrix Adaptation Evolution Strategy for Improving Machine Learning Approaches in Streamflow Prediction," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
    10. Bibhuti Bhusan Sahoo & Sovan Sankalp & Ozgur Kisi, 2023. "A Novel Smoothing-Based Deep Learning Time-Series Approach for Daily Suspended Sediment Load Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4271-4292, September.
    11. Zhang, Shuo & Kang, Yan & Gao, Xuan & Chen, Peiru & Cheng, Xiao & Song, Songbai & Li, Lingjie, 2023. "Optimal reservoir operation and risk analysis of agriculture water supply considering encounter uncertainty of precipitation in irrigation area and runoff from upstream," Agricultural Water Management, Elsevier, vol. 277(C).
    12. Jincheng Zhou & Dan Wang & Shahab S. Band & Changhyun Jun & Sayed M. Bateni & M. Moslehpour & Hao-Ting Pai & Chung-Chian Hsu & Rasoul Ameri, 2023. "Monthly River Discharge Forecasting Using Hybrid Models Based on Extreme Gradient Boosting Coupled with Wavelet Theory and Lévy–Jaya Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3953-3972, August.
    13. Jinlin Li & Lanhui Zhang, 2021. "Comparison of Four Methods for Vertical Extrapolation of Soil Moisture Contents from Surface to Deep Layers in an Alpine Area," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    14. Yong Huang & Kehan Miao & Xiaoguang Liu & Yin Jiang, 2022. "The Hysteresis Response of Groundwater to Reservoir Water Level Changes in a Plain Reservoir Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4739-4763, September.
    15. Bisrat Ayalew Yifru & Kyoung Jae Lim & Seoro Lee, 2024. "Enhancing Streamflow Prediction Physically Consistently Using Process-Based Modeling and Domain Knowledge: A Review," Sustainability, MDPI, vol. 16(4), pages 1-27, February.
    16. Jihong Qu & Kun Ren & Xiaoyu Shi, 2021. "Binary Grey Wolf Optimization-Regularized Extreme Learning Machine Wrapper Coupled with the Boruta Algorithm for Monthly Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1029-1045, February.
    17. Maryam Rahimzad & Alireza Moghaddam Nia & Hosam Zolfonoon & Jaber Soltani & Ali Danandeh Mehr & Hyun-Han Kwon, 2021. "Performance Comparison of an LSTM-based Deep Learning Model versus Conventional Machine Learning Algorithms for Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4167-4187, September.
    18. Zhenyu Mu & Xueshan Ai & Jie Ding & Kui Huang & Senlin Chen & Jiajun Guo & Zuo Dong, 2022. "Risk Analysis of Dynamic Water Level Setting of Reservoir in Flood Season Based on Multi-index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3067-3086, July.
    19. Milica Markovic & Jelena Markovic Brankovic & Miona Andrejevic Stosovic & Srdjan Zivkovic & Bojan Brankovic, 2021. "A New Method for Pore Pressure Prediction on Malfunctioning Cells Using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 979-992, February.
    20. Bin Liu & Feilian Zhang & Feng-jang Hwang, 2021. "Comfort Value of Water: Natural-artificial Dual-structured Analytical Framework for Comfort Assessment of Regional Water Environment and Landscape System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4747-4768, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:15:d:10.1007_s11269-024-03953-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.