Incorporating Empirical Orthogonal Function Analysis into Machine Learning Models for Streamflow Prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shivshanker Patel & Parthasarathy Ramachandran, 2015. "A Comparison of Machine Learning Techniques for Modeling River Flow Time Series: The Case of Upper Cauvery River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 589-602, January.
- Peiman Parisouj & Hamid Mohebzadeh & Taesam Lee, 2020. "Employing Machine Learning Algorithms for Streamflow Prediction: A Case Study of Four River Basins with Different Climatic Zones in the United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4113-4131, October.
- Dhiman, Harsh S. & Deb, Dipankar & Guerrero, Josep M., 2019. "Hybrid machine intelligent SVR variants for wind forecasting and ramp events," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 369-379.
- Rajib Bhattacharjya & Sandeep Chaurasia, 2013. "Geomorphology Based Semi-Distributed Approach for Modelling Rainfall-Runoff Process," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 567-579, January.
- Blankenau, Philip A. & Kilic, Ayse & Allen, Richard, 2020. "An evaluation of gridded weather data sets for the purpose of estimating reference evapotranspiration in the United States," Agricultural Water Management, Elsevier, vol. 242(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
- Isabel Kaufmann Almeida & Aleska Kaufmann Almeida & Jorge Luiz Steffen & Teodorico Alves Sobrinho, 2016. "Model for Estimating the Time of Concentration in Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4083-4096, September.
- Robyn Horan & Pawan S. Wable & Veena Srinivasan & Helen E. Baron & Virginie J. D. Keller & Kaushal K. Garg & Nathan Rickards & Mike Simpson & Helen A. Houghton-Carr & H. Gwyn Rees, 2021. "Modelling Small-Scale Storage Interventions in Semi-Arid India at the Basin Scale," Sustainability, MDPI, vol. 13(11), pages 1-28, May.
- Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
- Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
- Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
- Junwei Fu & Yuna Ni & Yuming Ma & Jian Zhao & Qiuyi Yang & Shiyi Xu & Xiang Zhang & Yuhua Liu, 2023. "A Visualization-Based Ramp Event Detection Model for Wind Power Generation," Energies, MDPI, vol. 16(3), pages 1-16, January.
- Yuri B. Kirsta & Ol’ga V. Lovtskaya, 2021. "Good-quality Long-term Forecast of Spring-summer Flood Runoff for Mountain Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 811-825, February.
- Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
- Cécile Couharde & Rémi Generoso, 2023.
"The financial cost of stabilizing US farm income under climate change,"
Working Papers
hal-04159823, HAL.
- Cécile Couharde & Rémi Generoso, 2023. "The financial cost of stabilizing US farm income under climate change," EconomiX Working Papers 2023-18, University of Paris Nanterre, EconomiX.
- Zhuoqi Wang & Yuan Si & Haibo Chu, 2022. "Daily Streamflow Prediction and Uncertainty Using a Long Short-Term Memory (LSTM) Network Coupled with Bootstrap," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4575-4590, September.
- Allen, Richard G. & Dhungel, Ramesh & Dhungana, Bibha & Huntington, Justin & Kilic, Ayse & Morton, Charles, 2021. "Conditioning point and gridded weather data under aridity conditions for calculation of reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 245(C).
- Rana Muhammad Adnan Ikram & Leonardo Goliatt & Ozgur Kisi & Slavisa Trajkovic & Shamsuddin Shahid, 2022. "Covariance Matrix Adaptation Evolution Strategy for Improving Machine Learning Approaches in Streamflow Prediction," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
- Hakan Tongal & Martijn J. Booij, 2016. "A Comparison of Nonlinear Stochastic Self-Exciting Threshold Autoregressive and Chaotic k-Nearest Neighbour Models in Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1515-1531, March.
- Jabeur, Sami Ben & Ballouk, Houssein & Mefteh-Wali, Salma & Omri, Anis, 2022.
"Forecasting the macrolevel determinants of entrepreneurial opportunities using artificial intelligence models,"
Technological Forecasting and Social Change, Elsevier, vol. 175(C).
- Sami Ben Jabeur & Houssein Ballouk & Salma Mefteh-Wali & Anis Omri, 2021. "Forecasting the macrolevel determinants of entrepreneurial opportunities using artificial intelligence models," Post-Print hal-03442122, HAL.
- Yingjie Zhu & Jiageng Ma & Fangqing Gu & Jie Wang & Zhijuan Li & Youyao Zhang & Jiani Xu & Yifan Li & Yiwen Wang & Xiangqun Yang, 2023. "Price Prediction of Bitcoin Based on Adaptive Feature Selection and Model Optimization," Mathematics, MDPI, vol. 11(6), pages 1-22, March.
- Henrik Zsiborács & Gábor Pintér & András Vincze & Nóra Hegedűsné Baranyai, 2022. "Wind Power Generation Scheduling Accuracy in Europe: An Overview of ENTSO-E Countries," Sustainability, MDPI, vol. 14(24), pages 1-58, December.
- Marania Hopuare & Tao Manni & Victoire Laurent & Keitapu Maamaatuaiahutapu, 2022. "Investigating Wind Energy Potential in Tahiti, French Polynesia," Energies, MDPI, vol. 15(6), pages 1-13, March.
- Jincheng Zhou & Dan Wang & Shahab S. Band & Changhyun Jun & Sayed M. Bateni & M. Moslehpour & Hao-Ting Pai & Chung-Chian Hsu & Rasoul Ameri, 2023. "Monthly River Discharge Forecasting Using Hybrid Models Based on Extreme Gradient Boosting Coupled with Wavelet Theory and Lévy–Jaya Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3953-3972, August.
- Jinlin Li & Lanhui Zhang, 2021. "Comparison of Four Methods for Vertical Extrapolation of Soil Moisture Contents from Surface to Deep Layers in an Alpine Area," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
More about this item
Keywords
gridded climate data; machine learning; empirical orthogonal;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6612-:d:826468. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.