IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i12d10.1007_s11269-022-03275-1.html
   My bibliography  Save this article

The Hysteresis Response of Groundwater to Reservoir Water Level Changes in a Plain Reservoir Area

Author

Listed:
  • Yong Huang

    (Hohai University)

  • Kehan Miao

    (Hohai University)

  • Xiaoguang Liu

    (Water Resources Pearl River Planning, Surveying and Designing Co. Ltd (PRPSDC))

  • Yin Jiang

    (Hohai University)

Abstract

Reservoir immersion will lead to some environmental geological problems, such as soil swamping or salinization, reduction of building foundation strength, or even overall instability. Reservoir scope of immersion is closely related to changes in groundwater levels. According to the geological and hydrogeological conditions pertaining in the Jiangxiang reservoir area, the analytical method is employed to calculate the change in groundwater levels in an unconfined aquifer when the reservoir water level rises rapidly to a constant value and changes periodically. Combined with the related functions of MATLAB™ software, the lag and immersion times are determined in different locations around the reservoir. The results show that the change of the groundwater level exhibits hysteresis relative to that of the reservoir water level owing to the low permeability of silty loam and clay. The closer to the reservoir, the faster the groundwater level rises or falls. In the Guo Xiaoxu section, when the reservoir water level rises rapidly to 42.5 m, the groundwater level near the reservoir remains lower than the reservoir water level after 50 years. If the hydraulic conductivity is increased by three orders of magnitude, the groundwater level and the reservoir water level changes are positively correlated, and the hysteresis is not obvious. In the crop areas, the scope of immersion in the Guoxiaowei section is 31 m with the immersion elevation of 43.23 m, and the corresponding immersion time is 15,766 d. In residential areas, the scope of immersion of the Qigang section is 308 m with the immersion elevation of 46.78 m, and the corresponding immersion time is 16,354 d. The calculated scope of immersion and time at different locations provide a scientific basis for the design of the reservoir water level and the range of demolition affecting local residents.

Suggested Citation

  • Yong Huang & Kehan Miao & Xiaoguang Liu & Yin Jiang, 2022. "The Hysteresis Response of Groundwater to Reservoir Water Level Changes in a Plain Reservoir Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4739-4763, September.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:12:d:10.1007_s11269-022-03275-1
    DOI: 10.1007/s11269-022-03275-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03275-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03275-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheelabhadra Mohanty & Madan Jha & Ashwani Kumar & K. Sudheer, 2010. "Artificial Neural Network Modeling for Groundwater Level Forecasting in a River Island of Eastern India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1845-1865, July.
    2. Lei Zhang & Zhiqiang Jiang & Shanshan He & Jiefeng Duan & Pengfei Wang & Ting Zhou, 2022. "Study on Water Quality Prediction of Urban Reservoir by Coupled CEEMDAN Decomposition and LSTM Neural Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3715-3735, August.
    3. Saeed Mozaffari & Saman Javadi & Hamid Kardan Moghaddam & Timothy O. Randhir, 2022. "Forecasting Groundwater Levels using a Hybrid of Support Vector Regression and Particle Swarm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1955-1972, April.
    4. Li, Jiang & Mao, Xiaomin & Li, Mo, 2017. "Modeling hydrological processes in oasis of Heihe River Basin by landscape unit-based conceptual models integrated with FEFLOW and GIS," Agricultural Water Management, Elsevier, vol. 179(C), pages 338-351.
    5. Peiman Parisouj & Hamid Mohebzadeh & Taesam Lee, 2020. "Employing Machine Learning Algorithms for Streamflow Prediction: A Case Study of Four River Basins with Different Climatic Zones in the United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4113-4131, October.
    6. Mojtaba Poursaeid & Amir Houssain Poursaeid & Saeid Shabanlou, 2022. "A Comparative Study of Artificial Intelligence Models and A Statistical Method for Groundwater Level Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1499-1519, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Sarma & S. K. Singh, 2022. "A Comparative Study of Data-driven Models for Groundwater Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2741-2756, June.
    2. Saeideh Samani & Meysam Vadiati & Farahnaz Azizi & Efat Zamani & Ozgur Kisi, 2022. "Groundwater Level Simulation Using Soft Computing Methods with Emphasis on Major Meteorological Components," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3627-3647, August.
    3. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    4. Kostić, Srđan & Stojković, Milan & Guranov, Iva & Vasović, Nebojša, 2019. "Revealing the background of groundwater level dynamics: Contributing factors, complex modeling and engineering applications," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 408-421.
    5. Yuri B. Kirsta & Ol’ga V. Lovtskaya, 2021. "Good-quality Long-term Forecast of Spring-summer Flood Runoff for Mountain Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 811-825, February.
    6. Liu, Minghuan & Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2018. "Long-term groundwater dynamics affected by intense agricultural activities in oasis areas of arid inland river basins, Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 37-52.
    7. S. Mohanty & Madan Jha & S. Raul & R. Panda & K. Sudheer, 2015. "Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5521-5532, December.
    8. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    9. Kusum Pandey & Shiv Kumar & Anurag Malik & Alban Kuriqi, 2020. "Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal Groundwater Table Depth Prediction in Uttar Pradesh, India," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    10. Raymond Kim & Daniel Loucks & Jery Stedinger, 2012. "Artificial Neural Network Models of Watershed Nutrient Loading," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2781-2797, August.
    11. Dilip Kumar Roy & Sujit Kumar Biswas & Kowshik Kumar Saha & Khandakar Faisal Ibn Murad, 2021. "Groundwater Level Forecast Via a Discrete Space-State Modelling Approach as a Surrogate to Complex Groundwater Simulation Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1653-1672, April.
    12. Rana Muhammad Adnan Ikram & Leonardo Goliatt & Ozgur Kisi & Slavisa Trajkovic & Shamsuddin Shahid, 2022. "Covariance Matrix Adaptation Evolution Strategy for Improving Machine Learning Approaches in Streamflow Prediction," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
    13. Jincheng Zhou & Dan Wang & Shahab S. Band & Changhyun Jun & Sayed M. Bateni & M. Moslehpour & Hao-Ting Pai & Chung-Chian Hsu & Rasoul Ameri, 2023. "Monthly River Discharge Forecasting Using Hybrid Models Based on Extreme Gradient Boosting Coupled with Wavelet Theory and Lévy–Jaya Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3953-3972, August.
    14. Peiqiang Gao & Wenfeng Du & Qingwen Lei & Juezhi Li & Shuaiji Zhang & Ning Li, 2023. "NDVI Forecasting Model Based on the Combination of Time Series Decomposition and CNN – LSTM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1481-1497, March.
    15. Vahid Habibi & Hasan Ahmadi & Mohammad Jafari & Abolfazl Moeini, 2019. "Application of nonlinear models and groundwater index to predict desertification case study: Sharifabad watershed," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 715-733, November.
    16. Afshin Khoshand, 2021. "Application of artificial intelligence in groundwater ecosystem protection: a case study of Semnan/Sorkheh plain, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16617-16631, November.
    17. Zhenfang He & Yaonan Zhang & Qingchun Guo & Xueru Zhao, 2014. "Comparative Study of Artificial Neural Networks and Wavelet Artificial Neural Networks for Groundwater Depth Data Forecasting with Various Curve Fractal Dimensions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5297-5317, December.
    18. Seyed Ahmad Soleymani & Shidrokh Goudarzi & Mohammad Hossein Anisi & Wan Haslina Hassan & Mohd Yamani Idna Idris & Shahaboddin Shamshirband & Noorzaily Mohamed Noor & Ismail Ahmedy, 2016. "A Novel Method to Water Level Prediction using RBF and FFA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3265-3283, July.
    19. Chen, Shilei & Huo, Zailin & Xu, Xu & Huang, Guanhua, 2019. "A conceptual agricultural water productivity model considering under field capacity soil water redistribution applicable for arid and semi-arid areas with deep groundwater," Agricultural Water Management, Elsevier, vol. 213(C), pages 309-323.
    20. Adib Roshani & Mehdi Hamidi, 2022. "Groundwater Level Fluctuations in Coastal Aquifer: Using Artificial Neural Networks to Predict the Impacts of Climatical CMIP6 Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 3981-4001, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:12:d:10.1007_s11269-022-03275-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.