Enhancing Streamflow Prediction Physically Consistently Using Process-Based Modeling and Domain Knowledge: A Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Juliane Mai & James R. Craig & Bryan A. Tolson & Richard Arsenault, 2022. "The sensitivity of simulated streamflow to individual hydrologic processes across North America," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Ming Zhong & Hongrui Zhang & Tao Jiang & Jun Guo & Jinxin Zhu & Dagang Wang & Xiaohong Chen, 2023. "A Hybrid Model Combining the Cama-Flood Model and Deep Learning Methods for Streamflow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4841-4859, September.
- Shahab Araghinejad & Nima Fayaz & Seyed-Mohammad Hosseini-Moghari, 2018. "Development of a Hybrid Data Driven Model for Hydrological Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3737-3750, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Anas Mahmood Al-Juboori, 2021. "A Hybrid Model to Predict Monthly Streamflow Using Neighboring Rivers Annual Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 729-743, January.
- Adisa Hammed Akinsoji & Bashir Adelodun & Qudus Adeyi & Rahmon Abiodun Salau & Golden Odey & Kyung Sook Choi, 2024. "Integrating Machine Learning Models with Comprehensive Data Strategies and Optimization Techniques to Enhance Flood Prediction Accuracy: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4735-4761, September.
- Wenhao Jia & Mufeng Chen & Hongyi Yao & Yixu Wang & Sen Wang & Xiaokuan Ni, 2024. "Improving Sub-daily Runoff Forecast Based on the Multi-objective Optimized Extreme Learning Machine for Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 6173-6189, December.
More about this item
Keywords
baseflow; data-driven modeling; streamflow prediction; physically consistent; process-based modeling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1376-:d:1334527. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.