IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i11d10.1007_s11269-023-03562-5.html
   My bibliography  Save this article

Ensemble Learning Paradigms for Flow Rate Prediction Boosting

Author

Listed:
  • Kouao Laurent Kouadio

    (Central South University
    Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration
    UFR Des Sciences de La Terre Et Des Ressources Minières, Université Félix Houphouët-Boigny)

  • Jianxin Liu

    (Central South University
    Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration)

  • Serge Kouamelan Kouamelan

    (UFR Des Sciences de La Terre Et Des Ressources Minières, Université Félix Houphouët-Boigny)

  • Rong Liu

    (Central South University
    Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration)

Abstract

In response to the issue of water scarcity in recent years, international organizations, in collaboration with many governments, have initiated several drinking water supply projects carried out by geophysical and drilling companies. Unfortunately, despite the reliability of electrical resistivity profiling (ERP) and vertical electrical sounding (VES) methods, the substantial financial losses incurred due to numerous unsuccessful drillings are owing to the difficulty to emphasize the drilling location properly. Therefore, we proposed the ensemble machine learning (EML) paradigms to predict the flow rate (FR) with an optimal score before any drilling operations. The approach was experimented in a region with severe water shortages. Thus, geo-electrical features from the ERP and VES were defined and coupled with borehole data to create the binary dataset $$( FR\le 1{m}^{3}/hr$$ ( F R ≤ 1 m 3 / h r and $$FR>1 {m}^{3}/hr$$ F R > 1 m 3 / h r for unproductive and productive boreholes respectively). Then, the dataset is state-of-art transformed before feeding to the EML algorithms. The model performance and generalization capability were evaluated using the Matthews correlation, the accuracy, the confusion matrix, the binary predictor error, the precision-recall, and the cumulative gain plot. As a result, the benchmark, pasting, extreme gradient boosting, and stacking paradigms have built a powerful range of FR prediction scores between 90 ~ 96%. Henceforth, the robust EML paradigms can be used to identify the best location for drilling operations, lowering the repercussion of unsuccessful drillings.

Suggested Citation

  • Kouao Laurent Kouadio & Jianxin Liu & Serge Kouamelan Kouamelan & Rong Liu, 2023. "Ensemble Learning Paradigms for Flow Rate Prediction Boosting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4413-4431, September.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:11:d:10.1007_s11269-023-03562-5
    DOI: 10.1007/s11269-023-03562-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03562-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03562-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed Hamitouche & Jose-Luis Molina, 2022. "A Review of AI Methods for the Prediction of High-Flow Extremal Hydrology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3859-3876, August.
    2. Haidong Huang & Zhixiong Zhang & Fengxuan Song, 2021. "An Ensemble-Learning-Based Method for Short-Term Water Demand Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1757-1773, April.
    3. Peyman Yariyan & Saeid Janizadeh & Tran Phong & Huu Duy Nguyen & Romulus Costache & Hiep Le & Binh Thai Pham & Biswajeet Pradhan & John P. Tiefenbacher, 2020. "Improvement of Best First Decision Trees Using Bagging and Dagging Ensembles for Flood Probability Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3037-3053, July.
    4. Djerbouai Salim & Souag-Gamane Doudja & Ferhati Ahmed & Djoukbala Omar & Dougha Mostafa & Benselama Oussama & Hasbaia Mahmoud, 2023. "Comparative Study of Different Discrete Wavelet Based Neural Network Models for long term Drought Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1401-1420, February.
    5. Mustafa Erkan Turan & Mehmet Ali Yurdusev, 2016. "Fuzzy Conceptual Hydrological Model for Water Flow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 653-667, January.
    6. Shengli Liao & Huan Wang & Benxi Liu & Xiangyu Ma & Binbin Zhou & Huaying Su, 2023. "Runoff Forecast Model Based on an EEMD-ANN and Meteorological Factors Using a Multicore Parallel Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1539-1555, March.
    7. Hanlin Li & Longxia Qian & Jianhong Yang & Suzhen Dang & Mei Hong, 2023. "Parameter Estimation for Univariate Hydrological Distribution Using Improved Bootstrap with Small Samples," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1055-1082, February.
    8. Phong Tung Nguyen & Duong Hai Ha & Huu Duy Nguyen & Tran Van Phong & Phan Trong Trinh & Nadhir Al-Ansari & Hiep Van Le & Binh Thai Pham & Lanh Si Ho & Indra Prakash, 2020. "Improvement of Credal Decision Trees Using Ensemble Frameworks for Groundwater Potential Modeling," Sustainability, MDPI, vol. 12(7), pages 1-28, March.
    9. Mustafa Turan & Mehmet Yurdusev, 2016. "Fuzzy Conceptual Hydrological Model for Water Flow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 653-667, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiang Hu & Yuelong Zhu & Hexuan Hu & Zhuang Guan & Zeyu Qian & Aiming Yang, 2022. "Multiple Kernel Learning with Maximum Inundation Extent from MODIS Imagery for Spatial Prediction of Flood Susceptibility," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 55-73, January.
    2. Neslihan Beden & Nazire Göksu Soydan-Oksal & Sema Arıman & Hayatullah Ahmadzai, 2023. "Delineation of a Groundwater Potential Zone Map for the Kızılırmak Delta by Using Remote-Sensing-Based Geospatial and Analytical Hierarchy Processes," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    3. Abu Reza Md. Towfiqul Islam & Md. Mijanur Rahman Bappi & Saeed Alqadhi & Ahmed Ali Bindajam & Javed Mallick & Swapan Talukdar, 2023. "Improvement of flood susceptibility mapping by introducing hybrid ensemble learning algorithms and high-resolution satellite imageries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 1-37, October.
    4. Jingwei Huang & Hui Qin & Yongchuan Zhang & Dongkai Hou & Sipeng Zhu & Pingan Ren, 2023. "Short-term Prediction Method of Reservoir Downstream Water Level Under Complicated Hydraulic Influence," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4475-4490, September.
    5. Ali Azedou & Said Lahssini & Abdellatif Khattabi & Modeste Meliho & Nabil Rifai, 2021. "A Methodological Comparison of Three Models for Gully Erosion Susceptibility Mapping in the Rural Municipality of El Faid (Morocco)," Sustainability, MDPI, vol. 13(2), pages 1-30, January.
    6. Manish Kumar & Ahmed Elbeltagi & Chaitanya B. Pande & Ali Najah Ahmed & Ming Fai Chow & Quoc Bao Pham & Anuradha Kumari & Deepak Kumar, 2022. "Applications of Data-driven Models for Daily Discharge Estimation Based on Different Input Combinations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2201-2221, May.
    7. Arnab Mitra & Arnav Jain & Avinash Kishore & Pravin Kumar, 2022. "A Comparative Study of Demand Forecasting Models for a Multi-Channel Retail Company: A Novel Hybrid Machine Learning Approach," SN Operations Research Forum, Springer, vol. 3(4), pages 1-22, December.
    8. Rana Muhammad Adnan & Abolfazl Jaafari & Aadhityaa Mohanavelu & Ozgur Kisi & Ahmed Elbeltagi, 2021. "Novel Ensemble Forecasting of Streamflow Using Locally Weighted Learning Algorithm," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    9. Syamsiyatul Muzayyanah & Cheng-Yih Hong & Rishan Adha & Su-Fen Yang, 2023. "The Non-Linear Relationship between Air Pollution, Labor Insurance and Productivity: Multivariate Adaptive Regression Splines Approach," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    10. Phong Tung Nguyen & Duong Hai Ha & Abolfazl Jaafari & Huu Duy Nguyen & Tran Van Phong & Nadhir Al-Ansari & Indra Prakash & Hiep Van Le & Binh Thai Pham, 2020. "Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam," IJERPH, MDPI, vol. 17(7), pages 1-20, April.
    11. Minh Pham Quang & Krti Tallam, 2022. "Predicting Flood Hazards in the Vietnam Central Region: An Artificial Neural Network Approach," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    12. Volkan Yilmaz & Mehmet Alpars, 2023. "An Investigation of the Temporal Interaction of Urban Water Consumption in the Framework of Settlement Characteristics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1619-1639, March.
    13. Jun Guo & Hui Sun & Baigang Du, 2022. "Multivariable Time Series Forecasting for Urban Water Demand Based on Temporal Convolutional Network Combining Random Forest Feature Selection and Discrete Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3385-3400, July.
    14. Jing Liu & Xin-Lei Zhou & Lu-Qi Zhang & Yue-Ping Xu, 2023. "Forecasting Short-term Water Demands with an Ensemble Deep Learning Model for a Water Supply System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 2991-3012, June.
    15. Saad S. Alarifi & Mohamed Abdelkareem & Fathy Abdalla & Mislat Alotaibi, 2022. "Flash Flood Hazard Mapping Using Remote Sensing and GIS Techniques in Southwestern Saudi Arabia," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    16. Abazar Esmali Ouri & Mohammad Golshan & Saeid Janizadeh & Artemi Cerdà & Assefa M. Melesse, 2020. "Soil Erosion Susceptibility Mapping in Kozetopraghi Catchment, Iran: A Mixed Approach Using Rainfall Simulator and Data Mining Techniques," Land, MDPI, vol. 9(10), pages 1-18, October.
    17. Jacek Wawrzosek & Syzmon Ignaciuk & Justyna Stańczyk & Joanna Kajewska-Szkudlarek, 2021. "Water Consumption Variability Based on Cumulative Data From Non-simultaneous and Long-term Measurements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2799-2812, July.
    18. Eyimoga, Helen Alikeju & Abraham Sunday Samuel (PhD), 2023. "An analysis of the effects of urbanization on urban drainage systems in Ankpa, Dekina and Oguma Towns of Kogi State in North Central Nigeria," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(05), pages 149-162, May.
    19. Hang Ha & Quynh Duy Bui & Huy Dinh Nguyen & Binh Thai Pham & Trinh Dinh Lai & Chinh Luu, 2023. "A practical approach to flood hazard, vulnerability, and risk assessing and mapping for Quang Binh province, Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1101-1130, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:11:d:10.1007_s11269-023-03562-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.