IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i6d10.1007_s11269-021-02808-4.html
   My bibliography  Save this article

An Ensemble-Learning-Based Method for Short-Term Water Demand Forecasting

Author

Listed:
  • Haidong Huang

    (Beibu Gulf University)

  • Zhixiong Zhang

    (Beibu Gulf University)

  • Fengxuan Song

    (Beibu Gulf University)

Abstract

Short-term water demand forecasting has always been a hot research topic in the field of water distribution systems, and many researchers have developed a wide variety of methods based on different prediction periodicities. However, few studies have paid attention to using ensemble learning methods for short-term water demand forecasting. In this study, an ensemble-learning-based method was developed to forecast short-term water demand. The proposed method consists of two models: an equal-dimension and new-information model and an ensemble learning model. The purpose of the equal-dimension and new-information model is to update data for modelling periodically, while the ensemble learning model is used for water demand forecasting. To evaluate the forecasting performance, the proposed method was applied to a data set obtained from a real-world water distribution system and compared with the single back-propagation neural network (BPNN) model and the seasonal autoregressive integrated moving average (SARIMA) model. The results show that the proposed method improves both the accuracy and stability of water demand prediction. The proposed method has the potential to provide a promising alternative for short-term water demand forecasting.

Suggested Citation

  • Haidong Huang & Zhixiong Zhang & Fengxuan Song, 2021. "An Ensemble-Learning-Based Method for Short-Term Water Demand Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1757-1773, April.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:6:d:10.1007_s11269-021-02808-4
    DOI: 10.1007/s11269-021-02808-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02808-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02808-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahmut Firat & Mehmet Yurdusev & Mustafa Turan, 2009. "Evaluation of Artificial Neural Network Techniques for Municipal Water Consumption Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 617-632, March.
    2. Borra, Simone & Di Ciaccio, Agostino, 2002. "Improving nonparametric regression methods by bagging and boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 407-420, February.
    3. Salvatore Campisi-Pinto & Jan Adamowski & Gideon Oron, 2012. "Forecasting Urban Water Demand Via Wavelet-Denoising and Neural Network Models. Case Study: City of Syracuse, Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3539-3558, September.
    4. Ligang Zhou & Kin Keung Lai, 2017. "AdaBoost Models for Corporate Bankruptcy Prediction with Missing Data," Computational Economics, Springer;Society for Computational Economics, vol. 50(1), pages 69-94, June.
    5. Ashu Jain & Ashish Kumar Varshney & Umesh Chandra Joshi, 2001. "Short-Term Water Demand Forecast Modelling at IIT Kanpur Using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(5), pages 299-321, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kouao Laurent Kouadio & Jianxin Liu & Serge Kouamelan Kouamelan & Rong Liu, 2023. "Ensemble Learning Paradigms for Flow Rate Prediction Boosting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4413-4431, September.
    2. Volkan Yilmaz & Mehmet Alpars, 2023. "An Investigation of the Temporal Interaction of Urban Water Consumption in the Framework of Settlement Characteristics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1619-1639, March.
    3. Arnab Mitra & Arnav Jain & Avinash Kishore & Pravin Kumar, 2022. "A Comparative Study of Demand Forecasting Models for a Multi-Channel Retail Company: A Novel Hybrid Machine Learning Approach," SN Operations Research Forum, Springer, vol. 3(4), pages 1-22, December.
    4. Jun Guo & Hui Sun & Baigang Du, 2022. "Multivariable Time Series Forecasting for Urban Water Demand Based on Temporal Convolutional Network Combining Random Forest Feature Selection and Discrete Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3385-3400, July.
    5. Jacek Wawrzosek & Syzmon Ignaciuk & Justyna Stańczyk & Joanna Kajewska-Szkudlarek, 2021. "Water Consumption Variability Based on Cumulative Data From Non-simultaneous and Long-term Measurements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2799-2812, July.
    6. Jing Liu & Xin-Lei Zhou & Lu-Qi Zhang & Yue-Ping Xu, 2023. "Forecasting Short-term Water Demands with an Ensemble Deep Learning Model for a Water Supply System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 2991-3012, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salah L. Zubaidi & Sadik K. Gharghan & Jayne Dooley & Rafid M. Alkhaddar & Mawada Abdellatif, 2018. "Short-Term Urban Water Demand Prediction Considering Weather Factors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4527-4542, November.
    2. Xiao-Chen Yuan & Yi-Ming Wei & Su-Yan Pan & Ju-Liang Jin, 2014. "Urban Household Water Demand in Beijing by 2020: An Agent-Based Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2967-2980, August.
    3. Izabela Rojek, 2014. "Models for Better Environmental Intelligent Management within Water Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3875-3890, September.
    4. Mukand Babel & Nisuchcha Maporn & Victor Shinde, 2014. "Incorporating Future Climatic and Socioeconomic Variables in Water Demand Forecasting: A Case Study in Bangkok," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 2049-2062, May.
    5. Mukand Babel & Victor Shinde, 2011. "Identifying Prominent Explanatory Variables for Water Demand Prediction Using Artificial Neural Networks: A Case Study of Bangkok," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1653-1676, April.
    6. Paresh Shirsath & Anil Singh, 2010. "A Comparative Study of Daily Pan Evaporation Estimation Using ANN, Regression and Climate Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1571-1581, June.
    7. Young Hwan Choi & Donghwi Jung, 2020. "Development of Cross-Domain Artificial Neural Network to Predict High-Temporal Resolution Pressure Data," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    8. Taymoor Awchi, 2014. "River Discharges Forecasting In Northern Iraq Using Different ANN Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 801-814, February.
    9. Vinit Sehgal & Rajeev Sahay & Chandranath Chatterjee, 2014. "Effect of Utilization of Discrete Wavelet Components on Flood Forecasting Performance of Wavelet Based ANFIS Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1733-1749, April.
    10. De Bock, Koen W. & Coussement, Kristof & Van den Poel, Dirk, 2010. "Ensemble classification based on generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1535-1546, June.
    11. Zheng Zeng & Wei-Ge Luo & Fa-Cheng Yi & Feng-Yu Huang & Cheng-Xia Wang & Yi-Ping Zhang & Qiang-Qiang Cheng & Zhe Wang, 2021. "Horizontal Distribution of Cadmium in Urban Constructed Wetlands: A Case Study," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    12. Qinghua Zhang & Yanfang Diao & Jie Dong, 2013. "Regional Water Demand Prediction and Analysis Based on Cobb-Douglas Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3103-3113, June.
    13. Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
    14. Iman Fatehi & Bahman Amiri & Afshin Alizadeh & Jan Adamowski, 2015. "Modeling the Relationship between Catchment Attributes and In-stream Water Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5055-5072, November.
    15. Abdüsselam Altunkaynak, 2007. "Forecasting Surface Water Level Fluctuations of Lake Van by Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 399-408, February.
    16. Gajda, Janusz & Bartnicki, Grzegorz & Burnecki, Krzysztof, 2018. "Modeling of water usage by means of ARFIMA–GARCH processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 644-657.
    17. Vahid Moosavi & Mehdi Vafakhah & Bagher Shirmohammadi & Negin Behnia, 2013. "A Wavelet-ANFIS Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1301-1321, March.
    18. Zhao, Shan & Wei, G. W., 2003. "Jump process for the trend estimation of time series," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 219-241, February.
    19. Dong-Her Shih & Ching-Hsien Liao & Ting-Wei Wu & Huan-Shuo Chang & Ming-Hung Shih, 2022. "WSI: A New Early Warning Water Survival Index for the Domestic Water Demand," Mathematics, MDPI, vol. 10(23), pages 1-19, November.
    20. Sankhadeep Chatterjee & Sarbartha Sarkar & Nilanjan Dey & Soumya Sen, 2018. "Non-Dominated Sorting Genetic Algorithm-II-Induced Neural-Supported Prediction of Water Quality with Stability Analysis," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 17(02), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:6:d:10.1007_s11269-021-02808-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.