IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i10p368-d422914.html
   My bibliography  Save this article

Soil Erosion Susceptibility Mapping in Kozetopraghi Catchment, Iran: A Mixed Approach Using Rainfall Simulator and Data Mining Techniques

Author

Listed:
  • Abazar Esmali Ouri

    (Department of Watershed Management, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran)

  • Mohammad Golshan

    (Administration of Natural Resources and Watershed Management, Astara, Guilan 4391817897, Iran)

  • Saeid Janizadeh

    (Department of Watershed Management Engineering and Sciences, Faculty in Natural Resources and Marine Science, Tarbiat Modares University, Tehran 14115-111, Iran)

  • Artemi Cerdà

    (Soil Erosion and Degradation Research Group Department of Geography, Valencia University, Blasco Ibàñez, 28, 46010 Valencia, Spain)

  • Assefa M. Melesse

    (Department of Earth and Environment, AHC-5-390, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA)

Abstract

Soil erosion determines landforms, soil formation and distribution, soil fertility, and land degradation processes. In arid and semiarid ecosystems, soil erosion is a key process to understand, foresee, and prevent desertification. Addressing soil erosion throughout watersheds scales requires basic information to develop soil erosion control strategies and to reduce land degradation. To assess and remediate the non-sustainable soil erosion rates, restoration programs benefit from the knowledge of the spatial distribution of the soil losses to develop maps of soil erosion. This study presents Support Vector Machine (SVM), Random Forest (RF), and adaptive boosting (AdaBoost) data mining models to map soil erosion susceptibility in Kozetopraghi watershed, Iran. A soil erosion inventory map was prepared from field rainfall simulation experiments on 174 randomly selected points along the Kozetopraghi watershed. In previous studies, this map has been prepared using indirect methods such as the Universal Soil Loss Equation to assess soil erosion. Direct field measurements for mapping soil erosion susceptibility have so far not been carried out in our study site in the past. The soil erosion rate data generated by simulated rainfall in 1 m 2 plots at rainfall rate of 40 mmh −1 was used to develop the soil erosion map. Of the available data, 70% and 30% were randomly classified to calibrate and validate the models, respectively. As a result, the RF model with the highest area under the curve (AUC) value in a receiver operating characteristics (ROC) curve (0.91), and the lowest mean square error (MSE) value (0.09), has the most concordance and spatial differentiation. Sensitivity analysis by Jackknife and IncNodePurity methods indicates that the slope angle is the most important factor within the soil erosion susceptibility map. The RF susceptibility map showed that the areas located in the center and near the watershed outlet have the most susceptibility to soil erosion. This information can be used to support the development of sustainable restoration plans with more accuracy. Our methodology has been evaluated and can be also applied in other regions.

Suggested Citation

  • Abazar Esmali Ouri & Mohammad Golshan & Saeid Janizadeh & Artemi Cerdà & Assefa M. Melesse, 2020. "Soil Erosion Susceptibility Mapping in Kozetopraghi Catchment, Iran: A Mixed Approach Using Rainfall Simulator and Data Mining Techniques," Land, MDPI, vol. 9(10), pages 1-18, October.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:10:p:368-:d:422914
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/10/368/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/10/368/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. F. Falaschi & F. Giacomelli & P. Federici & A. Puccinelli & G. D’Amato Avanzi & A. Pochini & A. Ribolini, 2009. "Logistic regression versus artificial neural networks: landslide susceptibility evaluation in a sample area of the Serchio River valley, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 551-569, September.
    2. Peyman Yariyan & Saeid Janizadeh & Tran Phong & Huu Duy Nguyen & Romulus Costache & Hiep Le & Binh Thai Pham & Biswajeet Pradhan & John P. Tiefenbacher, 2020. "Improvement of Best First Decision Trees Using Bagging and Dagging Ensembles for Flood Probability Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3037-3053, July.
    3. Helen Briassoulis, 2019. "Combating Land Degradation and Desertification: The Land-Use Planning Quandary," Land, MDPI, vol. 8(2), pages 1-26, February.
    4. Jesús Barrena-González & Jesús Rodrigo-Comino & Yeboah Gyasi-Agyei & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Applying the RUSLE and ISUM in the Tierra de Barros Vineyards (Extremadura, Spain) to Estimate Soil Mobilisation Rates," Land, MDPI, vol. 9(3), pages 1-17, March.
    5. Ricci, G.F. & Jeong, J. & De Girolamo, A.M. & Gentile, F., 2020. "Effectiveness and feasibility of different management practices to reduce soil erosion in an agricultural watershed," Land Use Policy, Elsevier, vol. 90(C).
    6. Helene Gichenje & José Muñoz-Rojas & Teresa Pinto-Correia, 2019. "Opportunities and Limitations for Achieving Land Degradation-Neutrality through the Current Land-Use Policy Framework in Kenya," Land, MDPI, vol. 8(8), pages 1-23, July.
    7. Juan Remondo & Alberto González & José De Terán & Antonio Cendrero & Andrea Fabbri & Chang-Jo Chung, 2003. "Validation of Landslide Susceptibility Maps; Examples and Applications from a Case Study in Northern Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 437-449, November.
    8. Gezahegn Weldu Woldemariam & Anteneh Derribew Iguala & Solomon Tekalign & Ramireddy Uttama Reddy, 2018. "Spatial Modeling of Soil Erosion Risk and Its Implication for Conservation Planning: the Case of the Gobele Watershed, East Hararghe Zone, Ethiopia," Land, MDPI, vol. 7(1), pages 1-25, February.
    9. Hualin Xie & Yanwei Zhang & Zhilong Wu & Tiangui Lv, 2020. "A Bibliometric Analysis on Land Degradation: Current Status, Development, and Future Directions," Land, MDPI, vol. 9(1), pages 1-37, January.
    10. Xiaoliang Han & Peiyi Lv & Sen Zhao & Yan Sun & Shiyu Yan & Minghao Wang & Xiaona Han & Xiuru Wang, 2018. "The Effect of the Gully Land Consolidation Project on Soil Erosion and Crop Production on a Typical Watershed in the Loess Plateau," Land, MDPI, vol. 7(4), pages 1-19, September.
    11. Ali Keshavarzi & Vinod Kumar & Eduardo Leonel Bottega & Jesús Rodrigo-Comino, 2019. "Determining Land Management Zones Using Pedo-Geomorphological Factors in Potential Degraded Regions to Achieve Land Degradation Neutrality," Land, MDPI, vol. 8(6), pages 1-14, June.
    12. Tuan Anh Nguyen & Dugki Min & Jong Sou Park, 2015. "A Comprehensive Sensitivity Analysis of a Data Center Network with Server Virtualization for Business Continuity," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ara Jeong & Ronald I. Dorn & Yeong-Bae Seong & Byung-Yong Yu, 2021. "Acceleration of Soil Erosion by Different Land Uses in Arid Lands above 10 Be Natural Background Rates: Case Study in the Sonoran Desert, USA," Land, MDPI, vol. 10(8), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saskia Keesstra & Saskia Visser & Margot De Cleen, 2021. "Achieving Land Degradation Neutrality: A Robust Soil System Forms the Basis for Nature-Based Solutions," Land, MDPI, vol. 10(12), pages 1-4, November.
    2. Mária Barančoková & Matej Šošovička & Peter Barančok & Peter Barančok, 2021. "Predictive Modelling of Landslide Susceptibility in the Western Carpathian Flysch Zone," Land, MDPI, vol. 10(12), pages 1-28, December.
    3. Rares Halbac-Cotoara-Zamfir & Daniela Smiraglia & Giovanni Quaranta & Rosanna Salvia & Luca Salvati & Antonio Giménez-Morera, 2020. "Land Degradation and Mitigation Policies in the Mediterranean Region: A Brief Commentary," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    4. Gianluca Egidi & Luca Salvati & Pavel Cudlin & Rosanna Salvia & Manuela Romagnoli, 2020. "A New ‘Lexicon’ of Land Degradation: Toward a Holistic Thinking for Complex Socioeconomic Issues," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    5. Gezahegn Weldu Woldemariam & Arus Edo Harka, 2020. "Effect of Land Use and Land Cover Change on Soil Erosion in Erer Sub-Basin, Northeast Wabi Shebelle Basin, Ethiopia," Land, MDPI, vol. 9(4), pages 1-25, April.
    6. Rares Halbac-Cotoara-Zamfir & Andrea Colantoni & Enrico Maria Mosconi & Stefano Poponi & Simona Fortunati & Luca Salvati & Filippo Gambella, 2020. "From Historical Narratives to Circular Economy: De-Complexifying the “Desertification” Debate," IJERPH, MDPI, vol. 17(15), pages 1-18, July.
    7. Roman Plokhikh & Dana Shokparova & Gyula Fodor & Sándor Berghauer & Attila Tóth & Uzakbay Suymukhanov & Aiman Zhakupova & Imre Varga & Kai Zhu & Lóránt Dénes Dávid, 2023. "Towards Sustainable Pasture Agrolandscapes: A Landscape-Ecological-Indicative Approach to Environmental Audits and Impact Assessments," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    8. D. Costanzo & C. Cappadonia & C. Conoscenti & E. Rotigliano, 2012. "Exporting a Google Earth ™ aided earth-flow susceptibility model: a test in central Sicily," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 103-114, March.
    9. Qadri, Hussain Mohi ud Din & Ali, Hassnian & Abideen, Zain ul & Jafar, Ahmad, 2024. "Mapping the Evolution of Green Finance Research and Development in Emerging Green Economies," Resources Policy, Elsevier, vol. 91(C).
    10. Francisco Gutiérrez & Jesús Guerrero & Pedro Lucha, 2008. "Quantitative sinkhole hazard assessment. A case study from the Ebro Valley evaporite alluvial karst (NE Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(2), pages 211-233, May.
    11. Shuangqing Sheng & Wei Song & Hua Lian & Lei Ning, 2022. "Review of Urban Land Management Based on Bibliometrics," Land, MDPI, vol. 11(11), pages 1-25, November.
    12. E. Rotigliano & C. Cappadonia & C. Conoscenti & D. Costanzo & V. Agnesi, 2012. "Slope units-based flow susceptibility model: using validation tests to select controlling factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 143-153, March.
    13. Ying Liang & Wei Song, 2022. "Ecological and Environmental Effects of Land Use and Cover Changes on the Qinghai-Tibetan Plateau: A Bibliometric Review," Land, MDPI, vol. 11(12), pages 1-23, November.
    14. Bao-Li Miao & Ying Liu & Yu-Bing Fan & Xue-Jiao Niu & Xiu-Yun Jiang & Zeng Tang, 2023. "Optimization of Agricultural Resource Allocation among Crops: A Portfolio Model Analysis," Land, MDPI, vol. 12(10), pages 1-18, October.
    15. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    16. Qiang Hu & Yuelong Zhu & Hexuan Hu & Zhuang Guan & Zeyu Qian & Aiming Yang, 2022. "Multiple Kernel Learning with Maximum Inundation Extent from MODIS Imagery for Spatial Prediction of Flood Susceptibility," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 55-73, January.
    17. Cristina Tarantino & Palma Blonda & Guido Pasquariello, 2007. "Remote sensed data for automatic detection of land-use changes due to human activity in support to landslide studies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 245-267, April.
    18. Nikolai Dronin, 2023. "Reasons to rename the UNCCD: Review of transformation of the political concept through the influence of science," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2058-2078, March.
    19. Riaz Tabassum & Selama Aslam Izah & Nor Normaziah Mohd & Hassan Ahmad Fahmi Sheikh, 2024. "Meaningful Review of Existing Trends, Expansion, and Future Directions of Green Bond Research: A Bibliometric Approach," Studia Universitatis „Vasile Goldis” Arad – Economics Series, Sciendo, vol. 34(1), pages 1-36, March.
    20. Bořivoj Šarapatka & Marek Bednář, 2022. "Rainfall Erosivity Impact on Sustainable Management of Agricultural Land in Changing Climate Conditions," Land, MDPI, vol. 11(4), pages 1-11, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:10:p:368-:d:422914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.