A Review of AI Methods for the Prediction of High-Flow Extremal Hydrology
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-022-03240-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rashad Aliyev & Sara Salehi & Rafig Aliyev, 2019. "Development of Fuzzy Time Series Model for Hotel Occupancy Forecasting," Sustainability, MDPI, vol. 11(3), pages 1-13, February.
- Fiaz Hussain & Ray-Shyan Wu & Jing-Xue Wang, 2021. "Comparative study of very short-term flood forecasting using physics-based numerical model and data-driven prediction model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 249-284, May.
- Yiheng Li & Weidong Chen, 2020. "A Comparative Performance Assessment of Ensemble Learning for Credit Scoring," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
- José-Luis Molina & Santiago Zazo & Ana-María Martín-Casado & María-Carmen Patino-Alonso, 2020. "Rivers’ Temporal Sustainability through the Evaluation of Predictive Runoff Methods," Sustainability, MDPI, vol. 12(5), pages 1-21, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kouao Laurent Kouadio & Jianxin Liu & Serge Kouamelan Kouamelan & Rong Liu, 2023. "Ensemble Learning Paradigms for Flow Rate Prediction Boosting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4413-4431, September.
- Jingwei Huang & Hui Qin & Yongchuan Zhang & Dongkai Hou & Sipeng Zhu & Pingan Ren, 2023. "Short-term Prediction Method of Reservoir Downstream Water Level Under Complicated Hydraulic Influence," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4475-4490, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
- Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
- Binru Zhang & Yulian Pu & Yuanyuan Wang & Jueyou Li, 2019. "Forecasting Hotel Accommodation Demand Based on LSTM Model Incorporating Internet Search Index," Sustainability, MDPI, vol. 11(17), pages 1-14, August.
- Yang Liu & Fei Huang & Lili Ma & Qingguo Zeng & Jiale Shi, 2024. "Credit scoring prediction leveraging interpretable ensemble learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 286-308, March.
- Indy Man Kit Ho & Anthony Weldon & Jason Tze Ho Yong & Candy Tze Tim Lam & Jaime Sampaio, 2023. "Using Machine Learning Algorithms to Pool Data from Meta-Analysis for the Prediction of Countermovement Jump Improvement," IJERPH, MDPI, vol. 20(10), pages 1-15, May.
- Song, Houde & Liu, Xiaojing & Song, Meiqi, 2023. "Comparative study of data-driven and model-driven approaches in prediction of nuclear power plants operating parameters," Applied Energy, Elsevier, vol. 341(C).
- Babek Erdebilli & Burcu Devrim-İçtenbaş, 2022. "Ensemble Voting Regression Based on Machine Learning for Predicting Medical Waste: A Case from Turkey," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
- Babaei, Golnoosh & Giudici, Paolo & Raffinetti, Emanuela, 2023. "Explainable FinTech lending," Journal of Economics and Business, Elsevier, vol. 125.
- Tianxiang Zheng & Shaopeng Liu & Zini Chen & Yuhan Qiao & Rob Law, 2020. "Forecasting Daily Room Rates on the Basis of an LSTM Model in Difficult Times of Hong Kong: Evidence from Online Distribution Channels on the Hotel Industry," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
- Guner Altan & Server Demirci, 2022. "Credit Scoring on Cash Flow Table with Machine Learning: XGBoost Approach," Journal of Economic Policy Researches, Istanbul University, Faculty of Economics, vol. 9(2), pages 397-424, July.
- Renata Graf & Viktor Vyshnevskyi, 2022. "Forecasting Monthly River Flows in Ukraine under Different Climatic Conditions," Resources, MDPI, vol. 11(12), pages 1-24, November.
More about this item
Keywords
High-flow; Hydrological extremes; Artificial intelligence; Flood prediction; Forecasting system; SWOT analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:10:d:10.1007_s11269-022-03240-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.