IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i7d10.1007_s11269-021-02825-3.html
   My bibliography  Save this article

Identification of Sensitive Parameters of Urban Flood Model Based on Artificial Neural Network

Author

Listed:
  • Zening Wu

    (Zhengzhou University)

  • Bingyan Ma

    (Zhengzhou University)

  • Huiliang Wang

    (Zhengzhou University)

  • Caihong Hu

    (Zhengzhou University)

  • Hong Lv

    (Zhengzhou University)

  • Xiangyang Zhang

    (Zhengzhou University)

Abstract

Sensitivity analysis of urban flood model parameters is important for urban flood simulation. Efficient and accurate acquisition of sensitive parameters is the key to real-time model calibration. In order to quickly obtain the sensitive runoff parameters of the urban flood simulation model, this study proposes an artificial neural network-based identification method for sensitive parameters. Artificial neural network (ANN) models were constructed with the binary classification and multi-classification methods, and used environmental indicators that affect the parameter sensitivity of different hydrological response units as the input, with the sensitivity parameters of the Storm water management model (SWMM) being the output. The optimization of the ANN was realized by adjusting the number of nodes in the hidden layer and the maximum number of iterations. An example application was conducted in Zhengzhou, China. The results show that the binary classification ANN quickly identified sensitive parameters, and the prediction accuracy of all parameters exceeded 96%. Convergence can be achieved when the number of nodes in the hidden layer does not exceed twice the number of input nodes, and the maximum number of iterations does not exceed 200. Rapid and accurate identification of the sensitive runoff parameters of the urban flood simulation model was achieved, which reduced the time required for parameter sensitivity analysis.

Suggested Citation

  • Zening Wu & Bingyan Ma & Huiliang Wang & Caihong Hu & Hong Lv & Xiangyang Zhang, 2021. "Identification of Sensitive Parameters of Urban Flood Model Based on Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2115-2128, May.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:7:d:10.1007_s11269-021-02825-3
    DOI: 10.1007/s11269-021-02825-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02825-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02825-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephane Hallegatte & Colin Green & Robert J. Nicholls & Jan Corfee-Morlot, 2013. "Future flood losses in major coastal cities," Nature Climate Change, Nature, vol. 3(9), pages 802-806, September.
    2. Lin She & Xue-yi You, 2019. "A Dynamic Flow Forecast Model for Urban Drainage Using the Coupled Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3143-3153, July.
    3. Wei Zhang & Tian Li, 2015. "The Influence of Objective Function and Acceptability Threshold on Uncertainty Assessment of an Urban Drainage Hydraulic Model with Generalized Likelihood Uncertainty Estimation Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2059-2072, April.
    4. S. K. Aryal & S. Ashbolt & B. S. McIntosh & K. P. Petrone & S. Maheepala & R. K. Chowdhury & T. Gardener & R. Gardiner, 2016. "Assessing and Mitigating the Hydrological Impacts of Urbanisation in Semi-Urban Catchments Using the Storm Water Management Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5437-5454, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Runxi Li & Chengshuai Liu & Yehai Tang & Chaojie Niu & Yang Fan & Qingyuan Luo & Caihong Hu, 2024. "Study on Runoff Simulation with Multi-source Precipitation Information Fusion Based on Multi-model Ensemble," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 6139-6155, December.
    2. Laís Régis Salvino & Heber Pimentel Gomes & Saulo de Tarso Marques Bezerra, 2022. "Design of a Control System Using an Artificial Neural Network to Optimize the Energy Efficiency of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2779-2793, June.
    3. Bartosz Szeląg & Roman Suligowski & Grzegorz Majewski & Przemysław Kowal & Adrian Bralewski & Karolina Bralewska & Ewa Anioł & Wioletta Rogula-Kozłowska & Francesco Paola, 2022. "Application of Multinomial Logistic Regression to Model the Impact of Rainfall Genesis on the Performance of Storm Overflows: Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3699-3714, August.
    4. Harshanth Balacumaresan & Monzur Alam Imteaz & Md Abdul Aziz & Tanveer Choudhury, 2024. "Use of Artificial Intelligence Modelling for the Dynamic Simulation of Urban Catchment Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(10), pages 3657-3683, August.
    5. Hu Caihong & Zhang Xueli & Li Changqing & Liu Chengshuai & Wang Jinxing & Jian Shengqi, 2022. "Real-time Flood Classification Forecasting Based on k-means++ Clustering and Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 103-117, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abinash Bhattachan & Matthew D. Jurjonas & Priscilla R. Morris & Paul J. Taillie & Lindsey S. Smart & Ryan E. Emanuel & Erin L. Seekamp, 2019. "Linking residential saltwater intrusion risk perceptions to physical exposure of climate change impacts in rural coastal communities of North Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1277-1295, July.
    2. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    3. Ping Lan & Li Guo & Yaling Zhang & Guanghua Qin & Xiaodong Li & Carlos R. Mello & Elizabeth W. Boyer & Yehui Zhang & Bihang Fan, 2024. "Updating probable maximum precipitation for Hong Kong under intensifying extreme precipitation events," Climatic Change, Springer, vol. 177(2), pages 1-20, February.
    4. Allan Beltrán & David Maddison & Robert J. R. Elliott, 2018. "Assessing the Economic Benefits of Flood Defenses: A Repeat‐Sales Approach," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2340-2367, November.
    5. N. Zhang & H. Huang, 2018. "Assessment of world disaster severity processed by Gaussian blur based on large historical data: casualties as an evaluating indicator," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 173-187, May.
    6. Céline Grislain-Letrémy & Bertrand Villeneuve, 2019. "Natural disasters, land-use, and insurance," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 44(1), pages 54-86, March.
    7. Fabian Quichimbo-Miguitama & David Matamoros & Leticia Jiménez & Pablo Quichimbo-Miguitama, 2022. "Influence of Low-Impact Development in Flood Control: A Case Study of the Febres Cordero Stormwater System of Guayaquil (Ecuador)," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    8. Martin Vezér & Alexander Bakker & Klaus Keller & Nancy Tuana, 2018. "Epistemic and ethical trade-offs in decision analytical modelling," Climatic Change, Springer, vol. 147(1), pages 1-10, March.
    9. Shuyu Yang & Jiaju Lin & Xiongzhi Xue, 2024. "Climate Change May Increase the Impact of Coastal Flooding on Carbon Storage in China’s Coastal Terrestrial Ecosystems," Land, MDPI, vol. 13(11), pages 1-21, November.
    10. Sadie J. Ryan & Anna M. Stewart-Ibarra & Eunice Ordóñez-Enireb & Winnie Chu & Julia L. Finkelstein & Christine A. King & Luis E. Escobar & Christina Lupone & Froilan Heras & Erica Tauzer & Egan Waggon, 2018. "Spatiotemporal Variation in Environmental Vibrio cholerae in an Estuary in Southern Coastal Ecuador," IJERPH, MDPI, vol. 15(3), pages 1-13, March.
    11. Ke Wang & Yongsheng Yang & Genserik Reniers & Quanyi Huang, 2021. "A study into the spatiotemporal distribution of typhoon storm surge disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1237-1256, August.
    12. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    13. Matthias Garschagen & Gusti Ayu Ketut Surtiari & Mostapha Harb, 2018. "Is Jakarta’s New Flood Risk Reduction Strategy Transformational?," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    14. Mark Zandvoort & Nora Kooijmans & Paul Kirshen & Adri van den Brink, 2019. "Designing with Pathways: A Spatial Design Approach for Adaptive and Sustainable Landscapes," Sustainability, MDPI, vol. 11(3), pages 1-24, January.
    15. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    16. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    17. Zac J. Taylor, 2020. "The real estate risk fix: Residential insurance-linked securitization in the Florida metropolis," Environment and Planning A, , vol. 52(6), pages 1131-1149, September.
    18. Luke J. Jenkins & Ivan D. Haigh & Paula Camus & Douglas Pender & Jenny Sansom & Rob Lamb & Hachem Kassem, 2023. "The temporal clustering of storm surge, wave height, and high sea level exceedances around the UK coastline," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1761-1797, January.
    19. Kevin Fox Gotham & Richard Campanella & Katie Lauve‐Moon & Bradford Powers, 2018. "Hazard Experience, Geophysical Vulnerability, and Flood Risk Perceptions in a Postdisaster City, the Case of New Orleans," Risk Analysis, John Wiley & Sons, vol. 38(2), pages 345-356, February.
    20. Ping Ai & Dingbo Yuan & Chuansheng Xiong, 2018. "Copula-Based Joint Probability Analysis of Compound Floods from Rainstorm and Typhoon Surge: A Case Study of Jiangsu Coastal Areas, China," Sustainability, MDPI, vol. 10(7), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:7:d:10.1007_s11269-021-02825-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.