IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i15d10.1007_s11269-021-03007-x.html
   My bibliography  Save this article

Prediction of Seasonal Rainfall with One-year Lead Time Using Climate Indices: A Wavelet Neural Network Scheme

Author

Listed:
  • Meysam Ghamariadyan

    (Swinburne University of Technology)

  • Monzur A. Imteaz

    (Swinburne University of Technology)

Abstract

This paper presents the development of the Wavelet Artificial Neural Networks (WANN) model to forecast seasonal rainfall in Queensland, Australia, using the Inter-decadal Pacific Oscillation (IPO), Southern Oscillation Index (SOI), and Nino3.4 climate indices as predictors. Eight input sets with different combinations of predictive variables from 1908 to 2016 were considered to develop forecast models for ten selected rainfall stations in Queensland, Australia. The outcomes of WANN modeling are compared with Artificial Neural Networks (ANN). Moreover, the skillfulness of the WANN in comparison to the current climate prediction system used by the Australian Community Climate Earth-System Simulator–Seasonal (ACCESS–S) and climatology forecasts are investigated. Besides, the WANN predictions are compared with two other conventional approaches like autoregressive integrated moving average (ARIMA) and multiple linear regression (MLR) for further investigations. The comparisons indicated that the WANN achieves the lower average root mean square error (RMSE) in all the stations with 112.2mm compared to ANN with 178.9mm, ACCESS-S with 281.8mm, climatology prediction with 279.7mm, MLR with 195.1mm, and ARIMA with 187.7mm. The WANN seasonal rainfall forecasts are more accurate than the ANN, ACCESS-S, Climatology, MLR, and ARIMA by 37%, 60%, 53%, 42%, and 40%, respectively. It was also found that the ACCESS-S underestimates the extreme seasonal rainfall during the testing period up to 80%, while it is limited to 21% for the WANN among the selected stations. The results show that the WANN model outperforms the MLR, ARIMA, climatology, ACCESS-S, and ANN forecasts in all the selected stations.

Suggested Citation

  • Meysam Ghamariadyan & Monzur A. Imteaz, 2021. "Prediction of Seasonal Rainfall with One-year Lead Time Using Climate Indices: A Wavelet Neural Network Scheme," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5347-5365, December.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:15:d:10.1007_s11269-021-03007-x
    DOI: 10.1007/s11269-021-03007-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-03007-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-03007-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kai Lun Chong & Sai Hin Lai & Yu Yao & Ali Najah Ahmed & Wan Zurina Wan Jaafar & Ahmed El-Shafie, 2020. "Performance Enhancement Model for Rainfall Forecasting Utilizing Integrated Wavelet-Convolutional Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2371-2387, June.
    2. Wossenu Abtew & Paul Trimble, 2010. "El Niño–Southern Oscillation Link to South Florida Hydrology and Water Management Applications," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4255-4271, December.
    3. Adil M. Bagirov & Arshad Mahmood, 2018. "A Comparative Assessment of Models to Predict Monthly Rainfall in Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1777-1794, March.
    4. Elnaz Sharghi & Vahid Nourani & Hessam Najafi & Amir Molajou, 2018. "Emotional ANN (EANN) and Wavelet-ANN (WANN) Approaches for Markovian and Seasonal Based Modeling of Rainfall-Runoff Process," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3441-3456, August.
    5. Lamine Diop & Saeed Samadianfard & Ansoumana Bodian & Zaher Mundher Yaseen & Mohammad Ali Ghorbani & Hana Salimi, 2020. "Annual Rainfall Forecasting Using Hybrid Artificial Intelligence Model: Integration of Multilayer Perceptron with Whale Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 733-746, January.
    6. Alireza Farrokhi & Saeed Farzin & Sayed-Farhad Mousavi, 2020. "A New Framework for Evaluation of Rainfall Temporal Variability through Principal Component Analysis, Hybrid Adaptive Neuro-Fuzzy Inference System, and Innovative Trend Analysis Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3363-3385, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming Wei & Xue-yi You, 2022. "Monthly rainfall forecasting by a hybrid neural network of discrete wavelet transformation and deep learning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4003-4018, September.
    2. Farhana Islam & Monzur Alam Imteaz, 2022. "A Novel Hybrid Approach for Predicting Western Australia’s Seasonal Rainfall Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3649-3672, August.
    3. Guo-Yu Huang & Chi-Ju Lai & Ping-Feng Pai, 2022. "Forecasting Hourly Intermittent Rainfall by Deep Belief Networks with Simple Exponential Smoothing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5207-5223, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radhikesh Kumar & Maheshwari Prasad Singh & Bishwajit Roy & Afzal Hussain Shahid, 2021. "A Comparative Assessment of Metaheuristic Optimized Extreme Learning Machine and Deep Neural Network in Multi-Step-Ahead Long-term Rainfall Prediction for All-Indian Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1927-1960, April.
    2. Farhana Islam & Monzur Alam Imteaz, 2022. "A Novel Hybrid Approach for Predicting Western Australia’s Seasonal Rainfall Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3649-3672, August.
    3. Christine Kirchhoff, 2013. "Understanding and enhancing climate information use in water management," Climatic Change, Springer, vol. 119(2), pages 495-509, July.
    4. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
    5. Nourani, Vahid & Sharghi, Elnaz & Behfar, Nazanin & Zhang, Yongqiang, 2022. "Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data," Applied Energy, Elsevier, vol. 315(C).
    6. Mojtaba Kadkhodazadeh & Mahdi Valikhan Anaraki & Amirreza Morshed-Bozorgdel & Saeed Farzin, 2022. "A New Methodology for Reference Evapotranspiration Prediction and Uncertainty Analysis under Climate Change Conditions Based on Machine Learning, Multi Criteria Decision Making and Monte Carlo Methods," Sustainability, MDPI, vol. 14(5), pages 1-37, February.
    7. Vahid Nourani & Nardin Jabbarian Paknezhad & Hitoshi Tanaka, 2021. "Prediction Interval Estimation Methods for Artificial Neural Network (ANN)-Based Modeling of the Hydro-Climatic Processes, a Review," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    8. Pedro H. M. Nascimento & Vinícius A. Cabral & Ivo C. Silva Junior & Frederico F. Panoeiro & Leonardo M. Honório & André L. M. Marcato, 2021. "Spillage Forecast Models in Hydroelectric Power Plants Using Information from Telemetry Stations and Hydraulic Control," Energies, MDPI, vol. 14(1), pages 1-16, January.
    9. Eslam Mohammed Abdelkader & Abobakr Al-Sakkaf & Ghasan Alfalah & Nehal Elshaboury, 2022. "Hybrid Differential Evolution-Based Regression Tree Model for Predicting Downstream Dam Hazard Potential," Sustainability, MDPI, vol. 14(5), pages 1-21, March.
    10. Shu, Xingsheng & Ding, Wei & Peng, Yong & Wang, Ziru, 2024. "Value of long-term inflow forecast for hydropower operation: A case study in a low forecast precision region," Energy, Elsevier, vol. 298(C).
    11. Tarate Suryakant Bajirao & Pravendra Kumar & Manish Kumar & Ahmed Elbeltagi & Alban Kuriqi, 2021. "Superiority of Hybrid Soft Computing Models in Daily Suspended Sediment Estimation in Highly Dynamic Rivers," Sustainability, MDPI, vol. 13(2), pages 1-29, January.
    12. Vidayshree Misir & D. Arya & A. Murumkar, 2013. "Impact of ENSO on River Flows in Guyana," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4611-4621, October.
    13. Xingsheng Shu & Wei Ding & Yong Peng & Ziru Wang & Jian Wu & Min Li, 2021. "Monthly Streamflow Forecasting Using Convolutional Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5089-5104, December.
    14. Wei, Yu & Zhang, Jiahao & Chen, Yongfei & Wang, Yizhi, 2022. "The impacts of El Niño-southern oscillation on renewable energy stock markets: Evidence from quantile perspective," Energy, Elsevier, vol. 260(C).
    15. Ieva Meidute-Kavaliauskiene & Milad Alizadeh Jabehdar & Vida Davidavičienė & Mohammad Ali Ghorbani & Saad Sh. Sammen, 2021. "A Simple Way to Increase the Prediction Accuracy of Hydrological Processes Using an Artificial Intelligence Model," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    16. Yuxin Zhu & Jianzhong Zhou & Yongchuan Zhang & Zhiqiang Jiang & Benjun Jia & Wei Fang, 2022. "Optimal Energy Storage Operation Chart and Output Distribution of Cascade Reservoirs Based on Operating Rules Derivation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5751-5766, November.
    17. Wongchai Anupong & Muhsin Jaber Jweeg & Sameer Alani & Ibrahim H. Al-Kharsan & Aníbal Alviz-Meza & Yulineth Cárdenas-Escrocia, 2023. "Comparison of Wavelet Artificial Neural Network, Wavelet Support Vector Machine, and Adaptive Neuro-Fuzzy Inference System Methods in Estimating Total Solar Radiation in Iraq," Energies, MDPI, vol. 16(2), pages 1-14, January.
    18. Fatemeh Yavari & Seyyed Ali Salehi Neyshabouri & Jafar Yazdi & Amir Molajou & Adam Brysiewicz, 2022. "A Novel Framework for Urban Flood damage Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1991-2011, April.
    19. Salem Gharbia & Khurram Riaz & Iulia Anton & Gabor Makrai & Laurence Gill & Leo Creedon & Marion McAfee & Paul Johnston & Francesco Pilla, 2022. "Hybrid Data-Driven Models for Hydrological Simulation and Projection on the Catchment Scale," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    20. Mohammadi, Kasra & Goudarzi, Navid, 2018. "Study of inter-correlations of solar radiation, wind speed and precipitation under the influence of El Niño Southern Oscillation (ENSO) in California," Renewable Energy, Elsevier, vol. 120(C), pages 190-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:15:d:10.1007_s11269-021-03007-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.