IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i8d10.1007_s11269-022-03169-2.html
   My bibliography  Save this article

An Enhanced Beetle Antennae Search Algorithm Based Comprehensive Water Quality Index for Urban River Water Quality Assessment

Author

Listed:
  • Zehai Gao

    (Xi’an University of Technology)

  • Yang Liu

    (Xi’an University of Technology)

  • Nan Li

    (Shangnan Forestry Bureau)

  • Kangjie Ma

    (Shangnan Bureau of Natural Resources)

Abstract

Urban river not only has the important function in urban hydrological environment, but also is an area for entertainment. Water quality assessment is the core technique in water resource management. As the typical urban river, water samples were collected at 5 sampling points in Xi’an moat from January 2018 to December 2020, and 10 physicochemical parameters were analyzed. In this paper, a comprehensive water quality index (WQI) is designed based on the criterion of water quality classes and entropy weight method firstly. Secondly, the crucial water quality parameters is determined by using mutual information, coefficient of variation and the water quality difference. Finally, an enhanced beetle antennae search algorithm is proposed to optimize the weight values of the crucial parameters in the range 0 to 1, which represent the ratio of the crucial parameter in the minimum WQI (WQImin) model. The WQImin models with different number of crucial water quality parameters are implemented for water quality assessment. The effectiveness and superiority of the proposed enhanced beetle antennae search algorithm are validated in comparison with other evolutionary algorithms. The results show that the proposed WQImin model can assess the water quality accurately.

Suggested Citation

  • Zehai Gao & Yang Liu & Nan Li & Kangjie Ma, 2022. "An Enhanced Beetle Antennae Search Algorithm Based Comprehensive Water Quality Index for Urban River Water Quality Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2685-2702, June.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:8:d:10.1007_s11269-022-03169-2
    DOI: 10.1007/s11269-022-03169-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03169-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03169-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ye, Jun, 2010. "Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment," European Journal of Operational Research, Elsevier, vol. 205(1), pages 202-204, August.
    2. S. Vijay & K. Kamaraj, 2021. "Prediction of Water Quality Index in Drinking Water Distribution System Using Activation Functions Based Ann," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 535-553, January.
    3. Ghorban Asgari & Ensieh Komijani & Abdolmotaleb Seid-Mohammadi & Mohammad Khazaei, 2021. "Assessment the Quality of Bottled Drinking Water Through Mamdani Fuzzy Water Quality Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5431-5452, December.
    4. Xiaobin Zhang & Ligang Ma & Yihang Zhu & Weidong Lou & Baoliang Xie & Li Sheng & Hao Hu & Kefeng Zheng & Qing Gu, 2022. "Temporal Stability Analysis for the Evaluation of Spatial and Temporal Patterns of Surface Water Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1413-1429, March.
    5. Mojtaba Kadkhodazadeh & Saeed Farzin, 2021. "A Novel LSSVM Model Integrated with GBO Algorithm to Assessment of Water Quality Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3939-3968, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yali Lu & Wenwen Ding & Zhanguo Li, 2022. "A New EWM-FCM Approach to Optimize the Allocation of Water Ecology Compensation Funds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3779-3795, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mojtaba Poursaeid & Amir Houssain Poursaeid & Saeid Shabanlou, 2022. "A Comparative Study of Artificial Intelligence Models and A Statistical Method for Groundwater Level Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1499-1519, March.
    2. Wen Fan & Qing Liu & Mingyu Wang, 2021. "Bi-Level Multi-Objective Optimization Scheduling for Regional Integrated Energy Systems Based on Quantum Evolutionary Algorithm," Energies, MDPI, vol. 14(16), pages 1-15, August.
    3. Xuan Wang & Wenchong Tian & Zhenliang Liao, 2022. "Framework for Hyperparameter Impact Analysis and Selection for Water Resources Feedforward Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4201-4217, September.
    4. Pei Dang & Zhanwen Niu & Shang Gao & Lei Hou & Guomin Zhang, 2020. "Critical Factors Influencing the Sustainable Construction Capability in Prefabrication of Chinese Construction Enterprises," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    5. Parvin Golfam & Parisa-Sadat Ashofteh, 2022. "Performance Indexes Analysis of the Reservoir-Hydropower Plant System Affected by Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5127-5162, October.
    6. Saeid Alaei & Seyed Hossein Razavi Hajiagha & Hannan Amoozad Mahdiraji & Jose Arturo Garza-Reyes, 2023. "Unveiling the role of sustainable supply chain drivers toward knowledge-based economy via a novel permutation approach: implications from an emerging economy," Operations Management Research, Springer, vol. 16(3), pages 1231-1250, September.
    7. Yi Zhang & Yao Xu & Hao Kong & Gang Zhou, 2022. "Spatial-Temporal Evolution of Coupling Coordination between Green Transformation and the Quality of Economic Development," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    8. Mustafa Al-Mukhtar & Aman Srivastava & Leena Khadke & Tariq Al-Musawi & Ahmed Elbeltagi, 2024. "Prediction of Irrigation Water Quality Indices Using Random Committee, Discretization Regression, REPTree, and Additive Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 343-368, January.
    9. Mojtaba Kadkhodazadeh & Mahdi Valikhan Anaraki & Amirreza Morshed-Bozorgdel & Saeed Farzin, 2022. "A New Methodology for Reference Evapotranspiration Prediction and Uncertainty Analysis under Climate Change Conditions Based on Machine Learning, Multi Criteria Decision Making and Monte Carlo Methods," Sustainability, MDPI, vol. 14(5), pages 1-37, February.
    10. Yang, Chih-Ching, 2016. "Correlation coefficient evaluation for the fuzzy interval data," Journal of Business Research, Elsevier, vol. 69(6), pages 2138-2144.
    11. Stefan Tsokov & Milena Lazarova & Adelina Aleksieva-Petrova, 2022. "A Hybrid Spatiotemporal Deep Model Based on CNN and LSTM for Air Pollution Prediction," Sustainability, MDPI, vol. 14(9), pages 1-38, April.
    12. Shouzhen Zeng, 2013. "Some Intuitionistic Fuzzy Weighted Distance Measures and Their Application to Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(2), pages 281-298, March.
    13. Chao Liu & Mingshuang Xu & Yufeng Liu & Xuefei Li & Zonglin Pang & Sheng Miao, 2022. "Predicting Groundwater Indicator Concentration Based on Long Short-Term Memory Neural Network: A Case Study," IJERPH, MDPI, vol. 19(23), pages 1-14, November.
    14. Hassan Hashemi & Jalal Bazargan & S. Mousavi, 2013. "A Compromise Ratio Method with an Application to Water Resources Management: An Intuitionistic Fuzzy Set," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2029-2051, May.
    15. Icen Yoosefdoost & Abbas Khashei-Siuki & Hossein Tabari & Omolbani Mohammadrezapour, 2022. "Runoff Simulation Under Future Climate Change Conditions: Performance Comparison of Data-Mining Algorithms and Conceptual Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1191-1215, March.
    16. Hassan Hashemi & Seyed Meysam Mousavi & Edmundas Kazimieras Zavadskas & Alireza Chalekaee & Zenonas Turskis, 2018. "A New Group Decision Model Based on Grey-Intuitionistic Fuzzy-ELECTRE and VIKOR for Contractor Assessment Problem," Sustainability, MDPI, vol. 10(5), pages 1-19, May.
    17. Jian Lin & Fanyong Meng & Riqing Chen & Qiang Zhang, 2018. "Preference Attitude-Based Method for Ranking Intuitionistic Fuzzy Numbers and Its Application in Renewable Energy Selection," Complexity, Hindawi, vol. 2018, pages 1-14, February.
    18. Roy Chaoming Hsu & Tzu-Hao Lin & Po-Cheng Su, 2022. "Dynamic Energy Management for Perpetual Operation of Energy Harvesting Wireless Sensor Node Using Fuzzy Q-Learning," Energies, MDPI, vol. 15(9), pages 1-22, April.
    19. Monika Kulisz & Justyna Kujawska & Bartosz Przysucha & Wojciech Cel, 2021. "Forecasting Water Quality Index in Groundwater Using Artificial Neural Network," Energies, MDPI, vol. 14(18), pages 1-17, September.
    20. Jian-qiang Wang & Zhi-qiu Han & Hong-yu Zhang, 2014. "Multi-criteria Group Decision-Making Method Based on Intuitionistic Interval Fuzzy Information," Group Decision and Negotiation, Springer, vol. 23(4), pages 715-733, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:8:d:10.1007_s11269-022-03169-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.