IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i10d10.1007_s11269-024-03833-9.html
   My bibliography  Save this article

Use of Artificial Intelligence Modelling for the Dynamic Simulation of Urban Catchment Runoff

Author

Listed:
  • Harshanth Balacumaresan

    (Swinburne University of Technology)

  • Monzur Alam Imteaz

    (Swinburne University of Technology
    Swinburne University of Technology
    Swinburne University of Technology)

  • Md Abdul Aziz

    (Melbourne Water Corporation)

  • Tanveer Choudhury

    (Federation University Australia)

Abstract

The complex topography and inherent nonlinearity affiliated with influential hydrological processes of urban catchments, coupled with limited availability of measured data, limits the prediction accuracy of conventional models. Artificial Neural Network models (ANNs) have displayed commendable progress in recognising and simulating highly complex, non-linear associations allied with input-output variables, with limited comprehension of the underlying physical processes. Therefore, this paper investigates the effectiveness and accuracy of ANN models, in estimating the urban catchment runoff, employing minimal and commonly available hydrological data variables – rainfall and upstream catchment flow data, employing two powerful supervised-learning-algorithms, Bayesian-Regularization (BR) and Levenberg-Marquardt (LM). Gardiners Creek catchment, encompassed in Melbourne, Australia, with more than thirty years of quality-checked rainfall and streamflow data was chosen as the study location. Two significant storm events that transpired within the last fifteen years - the 4th of February 2011 and the 6th of November 2018, were nominated for calibration and validation of the ANN model. The study results advocate that the use of the LM-ANN model stipulates accurate estimates of the historical storm events, with a stronger correlation and lower generalisation error, in contrast to the BR-ANN model, while the integration of upstream catchment flow alongside rainfall, vindicate for their collective impact upon the dynamics of the flow being spawned at the downstream catchment locations, significantly enhancing the model performance and providing a more cost-effective and near-realistic modelling approach that can be considered for application in studies of urban catchment responses, with limited data availability.

Suggested Citation

  • Harshanth Balacumaresan & Monzur Alam Imteaz & Md Abdul Aziz & Tanveer Choudhury, 2024. "Use of Artificial Intelligence Modelling for the Dynamic Simulation of Urban Catchment Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(10), pages 3657-3683, August.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:10:d:10.1007_s11269-024-03833-9
    DOI: 10.1007/s11269-024-03833-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03833-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03833-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thiago Victor Medeiros Nascimento & Celso Augusto Guimarães Santos & Camilo Allyson Simões Farias & Richarde Marques Silva, 2022. "Correction to: Monthly Streamflow Modeling Based on Self-organizing Maps and Satellite-estimated Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2379-2380, May.
    2. Thiago Victor Medeiros Nascimento & Celso Augusto Guimarães Santos & Camilo Allyson Simões Farias & Richarde Marques Silva, 2022. "Monthly Streamflow Modeling Based on Self-Organizing Maps and Satellite-Estimated Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2359-2377, May.
    3. Zening Wu & Bingyan Ma & Huiliang Wang & Caihong Hu & Hong Lv & Xiangyang Zhang, 2021. "Identification of Sensitive Parameters of Urban Flood Model Based on Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2115-2128, May.
    4. Meysam Ghamariadyan & Monzur A. Imteaz, 2021. "Prediction of Seasonal Rainfall with One-year Lead Time Using Climate Indices: A Wavelet Neural Network Scheme," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5347-5365, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Wei & Xue-yi You, 2022. "Monthly rainfall forecasting by a hybrid neural network of discrete wavelet transformation and deep learning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4003-4018, September.
    2. Farhana Islam & Monzur Alam Imteaz, 2022. "A Novel Hybrid Approach for Predicting Western Australia’s Seasonal Rainfall Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3649-3672, August.
    3. Bartosz Szeląg & Roman Suligowski & Grzegorz Majewski & Przemysław Kowal & Adrian Bralewski & Karolina Bralewska & Ewa Anioł & Wioletta Rogula-Kozłowska & Francesco Paola, 2022. "Application of Multinomial Logistic Regression to Model the Impact of Rainfall Genesis on the Performance of Storm Overflows: Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3699-3714, August.
    4. Guo-Yu Huang & Chi-Ju Lai & Ping-Feng Pai, 2022. "Forecasting Hourly Intermittent Rainfall by Deep Belief Networks with Simple Exponential Smoothing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5207-5223, October.
    5. Amir Molajou & Vahid Nourani & Ali Davanlou Tajbakhsh & Hossein Akbari Variani & Mina Khosravi, 2024. "Multi-Step-Ahead Rainfall-Runoff Modeling: Decision Tree-Based Clustering for Hybrid Wavelet Neural- Networks Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(13), pages 5195-5214, October.
    6. Hu Caihong & Zhang Xueli & Li Changqing & Liu Chengshuai & Wang Jinxing & Jian Shengqi, 2022. "Real-time Flood Classification Forecasting Based on k-means++ Clustering and Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 103-117, January.
    7. Laís Régis Salvino & Heber Pimentel Gomes & Saulo de Tarso Marques Bezerra, 2022. "Design of a Control System Using an Artificial Neural Network to Optimize the Energy Efficiency of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2779-2793, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:10:d:10.1007_s11269-024-03833-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.