IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i11d10.1007_s11269-022-03259-1.html
   My bibliography  Save this article

Methodology for Estimating Streamflow by Water Balance and Rating Curve Methods Based on Logistic Regression

Author

Listed:
  • Tarcila Neves Generoso

    (Universidade Federal de Viçosa, University Campus)

  • Demetrius David Silva

    (Universidade Federal de Viçosa, University Campus)

  • Ricardo Santos Silva Amorim

    (Universidade Federal de Viçosa, University Campus)

  • Lineu Neiva Rodrigues

    (Universidade Federal de Viçosa, University Campus
    Brazilian Agricultural Research Corporation (EMPRAPA Cerrados))

  • Erli Pinto Santos

    (Universidade Federal de Viçosa, University Campus)

Abstract

Both water balance (WB) and rating curve (RC) are methods for estimating streamflow. The first is mostly used to estimate reservoir outflows, while the second is usually adopted in hydrometeorological network streamflow gauges. While WB uses hourly collected data, the RC estimates streamflow using current water level and extrapolation techniques. The objective of this study was to analyze variations in the reservoir’s hourly outflow at Queimado Hydroelectric Power Plant (HPP Queimado) and to propose a method to evaluate whether the estimate of the daily outflows, obtained by the WB method, is similar to the flow values obtained at a conventional station. The logistic regression (LR) model was used because it is a method that adopts binary, categorically dependent variables to identify the event of interest. The results showed that the values of streamflow, obtained from an average of two daily readings, were a good representation of the flows in the region. The LR was able to identify atypical data, especially in the rainy season. This means that data consistency analysis can be faster and safer, when adequately employed and considering the proposed conditions, contributing to both management policies and the management of water resources.

Suggested Citation

  • Tarcila Neves Generoso & Demetrius David Silva & Ricardo Santos Silva Amorim & Lineu Neiva Rodrigues & Erli Pinto Santos, 2022. "Methodology for Estimating Streamflow by Water Balance and Rating Curve Methods Based on Logistic Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4389-4402, September.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:11:d:10.1007_s11269-022-03259-1
    DOI: 10.1007/s11269-022-03259-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03259-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03259-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed M. Fathi & Ayman G. Awadallah & Nabil A. Awadallah, 2021. "Estimation of Regional Sub-Daily Rainfall Ratios Using SKATER Algorithm and Logistic Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 555-571, January.
    2. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    3. King, Gary & Zeng, Langche, 2001. "Logistic Regression in Rare Events Data," Political Analysis, Cambridge University Press, vol. 9(2), pages 137-163, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingwei Huang & Hui Qin & Yongchuan Zhang & Dongkai Hou & Sipeng Zhu & Pingan Ren, 2023. "Short-term Prediction Method of Reservoir Downstream Water Level Under Complicated Hydraulic Influence," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4475-4490, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tuomo Hartonen & Bradley Jermy & Hanna Sõnajalg & Pekka Vartiainen & Kristi Krebs & Andrius Vabalas & Tuija Leino & Hanna Nohynek & Jonas Sivelä & Reedik Mägi & Mark Daly & Hanna M. Ollila & Lili Mila, 2023. "Nationwide health, socio-economic and genetic predictors of COVID-19 vaccination status in Finland," Nature Human Behaviour, Nature, vol. 7(7), pages 1069-1083, July.
    2. Luca Barbaglia & Sebastiano Manzan & Elisa Tosetti, 2023. "Forecasting Loan Default in Europe with Machine Learning," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 569-596.
    3. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    4. F. Gauthier & D. Germain & B. Hétu, 2017. "Logistic models as a forecasting tool for snow avalanches in a cold maritime climate: northern Gaspésie, Québec, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 201-232, October.
    5. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    6. Douglas Cumming & Lars Hornuf & Moein Karami & Denis Schweizer, 2023. "Disentangling Crowdfunding from Fraudfunding," Journal of Business Ethics, Springer, vol. 182(4), pages 1103-1128, February.
    7. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    8. Eunae Yoo & Elliot Rabinovich & Bin Gu, 2020. "The Growth of Follower Networks on Social Media Platforms for Humanitarian Operations," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2696-2715, December.
    9. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    10. Lo Turco, Alessia & Maggioni, Daniela, 2018. "Effects of Islamic religiosity on bilateral trust in trade: The case of Turkish exports," Journal of Comparative Economics, Elsevier, vol. 46(4), pages 947-965.
    11. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    12. Blackman, Allen & Guerrero, Santiago, 2012. "What drives voluntary eco-certification in Mexico?," Journal of Comparative Economics, Elsevier, vol. 40(2), pages 256-268.
    13. Alessandra Iannamorelli & Stefano Nobili & Antonio Scalia & Luana Zaccaria, 2024. "Asymmetric Information and Corporate Lending: Evidence from SME Bond Markets," Review of Finance, European Finance Association, vol. 28(1), pages 163-201.
    14. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    15. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    17. Mehrez Ben Slama & Dhafer Saidane & Hassouna Fedhila, 2012. "How to identify targets in the M&A banking operations? Case of cross-border strategies in Europe by line of activity," Review of Quantitative Finance and Accounting, Springer, vol. 38(2), pages 209-240, February.
    18. Lorenzo Cassi & Anne Plunket, 2014. "Proximity, network formation and inventive performance: in search of the proximity paradox," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(2), pages 395-422, September.
    19. Heng Chen & Daniel F. Heitjan, 2022. "Analysis of local sensitivity to nonignorability with missing outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(4), pages 1342-1352, December.
    20. Xinfu Xing & Chenglong Wu & Jinhui Li & Xueyou Li & Limin Zhang & Rongjie He, 2021. "Susceptibility assessment for rainfall-induced landslides using a revised logistic regression method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 97-117, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:11:d:10.1007_s11269-022-03259-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.