IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v512y2018icp644-657.html
   My bibliography  Save this article

Modeling of water usage by means of ARFIMA–GARCH processes

Author

Listed:
  • Gajda, Janusz
  • Bartnicki, Grzegorz
  • Burnecki, Krzysztof

Abstract

This paper addresses an important problem of modeling and prediction of phenomena with antipersistent behavior and variance changing in time. As a proper stochastic model we propose an autoregressive fractionally integrated moving average (ARFIMA) process with generalized autoregressive conditional heteroskedasticity (GARCH) noise. First, we introduce a simple identification and validation algorithm for such model. Second, we apply the algorithm to weekday data of hot water usage at urban residential blocks. We extract the deterministic sinusoidal component from the data and fit successfully the ARFIMA–GARCH model to the stochastic part. The goodness of fit is checked by examining model errors and prediction performance. All analyses are performed by the rigorous statistical procedure. The proposed model allows for real-time accurate predictions and when implemented at a hot water supply level will lead to a better optimization of the control system and energy efficiency use.

Suggested Citation

  • Gajda, Janusz & Bartnicki, Grzegorz & Burnecki, Krzysztof, 2018. "Modeling of water usage by means of ARFIMA–GARCH processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 644-657.
  • Handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:644-657
    DOI: 10.1016/j.physa.2018.08.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711831077X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.08.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dotzauer, Erik, 2002. "Simple model for prediction of loads in district-heating systems," Applied Energy, Elsevier, vol. 73(3-4), pages 277-284, November.
    2. Animesh Gain & Yoshihide Wada, 2014. "Assessment of Future Water Scarcity at Different Spatial and Temporal Scales of the Brahmaputra River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 999-1012, March.
    3. Weron, Rafał, 2002. "Estimating long-range dependence: finite sample properties and confidence intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
    4. Liangxin Fan & Guobin Liu & Fei Wang & Coen Ritsema & Violette Geissen, 2014. "Domestic Water Consumption under Intermittent and Continuous Modes of Water Supply," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 853-865, February.
    5. Krzysztof Burnecki & Joanna Janczura & Rafal Weron, 2010. "Building Loss Models," HSC Research Reports HSC/10/03, Hugo Steinhaus Center, Wroclaw University of Technology.
    6. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    7. Podobnik, Boris & Horvatic, Davor & Lam Ng, Alfonso & Eugene Stanley, H. & Ivanov, Plamen Ch., 2008. "Modeling long-range cross-correlations in two-component ARFIMA and FIARCH processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3954-3959.
    8. Lowry, Gordon & Bianeyin, Felix U. & Shah, Nirav, 2007. "Seasonal autoregressive modelling of water and fuel consumptions in buildings," Applied Energy, Elsevier, vol. 84(5), pages 542-552, May.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Xiu, Jin & Jin, Yao, 2007. "Empirical study of ARFIMA model based on fractional differencing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 138-154.
    11. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
    12. Graves, Timothy & Franzke, Christian L.E. & Watkins, Nicholas W. & Gramacy, Robert B. & Tindale, Elizabeth, 2017. "Systematic inference of the long-range dependence and heavy-tail distribution parameters of ARFIMA models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 60-71.
    13. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
    14. Pavel Cizek & Wolfgang Karl Härdle & Rafal Weron, 2005. "Statistical Tools for Finance and Insurance," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0501, December.
    15. Yanhui Liu & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1997. "Correlations in Economic Time Series," Papers cond-mat/9706021, arXiv.org.
    16. Burnecki, Krzysztof & Sikora, Grzegorz, 2017. "Identification and validation of stable ARFIMA processes with application to UMTS data," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 456-466.
    17. Burnecki, Krzysztof & Gajda, Janusz & Sikora, Grzegorz, 2011. "Stability and lack of memory of the returns of the Hang Seng index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3136-3146.
    18. Carbone, Anna & Stanley, H. Eugene, 2007. "Scaling properties and entropy of long-range correlated time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(1), pages 21-24.
    19. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    20. Liu, Yanhui & Cizeau, Pierre & Meyer, Martin & Peng, C.-K. & Eugene Stanley, H., 1997. "Correlations in economic time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 437-440.
    21. Lv, Xiaodong & Shan, Xian, 2013. "Modeling natural gas market volatility using GARCH with different distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5685-5699.
    22. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    23. Ashu Jain & Ashish Kumar Varshney & Umesh Chandra Joshi, 2001. "Short-Term Water Demand Forecast Modelling at IIT Kanpur Using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(5), pages 299-321, October.
    24. Krzysztof Burnecki & Agnieszka Wylomanska & Aleksei Chechkin, 2015. "Discriminating between Light- and Heavy-Tailed Distributions with Limit Theorem," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-23, December.
    25. Vaghefi, A. & Jafari, M.A. & Bisse, Emmanuel & Lu, Y. & Brouwer, J., 2014. "Modeling and forecasting of cooling and electricity load demand," Applied Energy, Elsevier, vol. 136(C), pages 186-196.
    26. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denys Pommeret & Laurence Reboul & Anne-francoise Yao, 2023. "Testing the equality of the laws of two strictly stationary processes," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 193-214, April.
    2. Chen, Xuehui & Zhu, Hongli & Zhang, Xinru & Zhao, Lutao, 2022. "A novel time-varying FIGARCH model for improving volatility predictions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    2. Malinda & Maya & Jo-Hui & Chen, 2022. "Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-6.
    3. Paul Bui Quang & Tony Klein & Nam H. Nguyen & Thomas Walther, 2018. "Value-at-Risk for South-East Asian Stock Markets: Stochastic Volatility vs. GARCH," JRFM, MDPI, vol. 11(2), pages 1-20, April.
    4. Thilo A. Schmitt & Rudi Schafer & Holger Dette & Thomas Guhr, 2015. "Quantile Correlations: Uncovering temporal dependencies in financial time series," Papers 1507.04990, arXiv.org.
    5. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    6. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    7. C.S. Bos & S.J. Koopman & M. Ooms, 2007. "Long Memory Modelling of Inflation with Stochastic Variance and Structural Breaks," Tinbergen Institute Discussion Papers 07-099/4, Tinbergen Institute.
    8. Giuricich, Mario Nicoló & Burnecki, Krzysztof, 2019. "Modelling of left-truncated heavy-tailed data with application to catastrophe bond pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 498-513.
    9. Bos, Charles S. & Koopman, Siem Jan & Ooms, Marius, 2014. "Long memory with stochastic variance model: A recursive analysis for US inflation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 144-157.
    10. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    11. Mustafa Demirel & Gazanfer Unal, 2020. "Applying multivariate-fractionally integrated volatility analysis on emerging market bond portfolios," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-29, December.
    12. Nikseresht, Ali & Amindavar, Hamidreza, 2024. "Energy demand forecasting using adaptive ARFIMA based on a novel dynamic structural break detection framework," Applied Energy, Elsevier, vol. 353(PA).
    13. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Long memory volatility in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1425-1433.
    14. Nomikos, Nikos & Andriosopoulos, Kostas, 2012. "Modelling energy spot prices: Empirical evidence from NYMEX," Energy Economics, Elsevier, vol. 34(4), pages 1153-1169.
    15. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601, December.
    16. B. D. Craven & Sardar M. N. Islam, 2015. "Stock Price Modeling: Separation of Trend and Fluctuations, and Implications," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-12, December.
    17. Gadea, Maria Dolores & Sabate, Marcela & Serrano, Jose Maria, 2004. "Structural breaks and their trace in the memory: Inflation rate series in the long-run," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 14(2), pages 117-134, April.
    18. Maria Pia Beccar Varela & Francis Biney & Ionut Florescu, 2015. "Long correlations and fractional difference analysis applied to the study of memory effects in high-frequency (tick) data," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1365-1374, August.
    19. Nick James & Max Menzies, 2023. "Collective dynamics, diversification and optimal portfolio construction for cryptocurrencies," Papers 2304.08902, arXiv.org, revised Jun 2023.
    20. Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2015. "Modeling and Forecasting Carbon Dioxide Emission Allowance Spot Price Volatility: Multifractal vs. GARCH-type Volatility Models," FinMaP-Working Papers 46, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:644-657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.