Improving nonparametric regression methods by bagging and boosting
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- De Bock, Koen W. & Coussement, Kristof & Van den Poel, Dirk, 2010.
"Ensemble classification based on generalized additive models,"
Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1535-1546, June.
- K. W. De Bock & K. Coussement & D. Van Den Poel & -, 2009. "Ensemble classification based on generalized additive models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/625, Ghent University, Faculty of Economics and Business Administration.
- K.W. de Bock & K. Coussement & D. van den Poel, 2010. "Ensemble classification based on generalized additive models," Post-Print halshs-00581711, HAL.
- De Bock, Koen W & Coussement, Kristof & Van den Poel, Dirk, 2010. "Ensemble classification based on generalized additive models," Working Papers 2010/02, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
- Yuanbing Zheng & Caixin Sun & Jian Li & Qing Yang & Weigen Chen, 2011. "Entropy-Based Bagging for Fault Prediction of Transformers Using Oil-Dissolved Gas Data," Energies, MDPI, vol. 4(8), pages 1-10, August.
- Petersen, Maya L. & Molinaro, Annette M. & Sinisi, Sandra E. & van der Laan, Mark J., 2007. "Cross-validated bagged learning," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1693-1704, October.
- Zhao, Shan & Wei, G. W., 2003. "Jump process for the trend estimation of time series," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 219-241, February.
- Gey, Servane & Poggi, Jean-Michel, 2006. "Boosting and instability for regression trees," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 533-550, January.
- Rueda, Cristina, 2013. "Degrees of freedom and model selection in semiparametric additive monotone regression," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 88-99.
- Haidong Huang & Zhixiong Zhang & Fengxuan Song, 2021. "An Ensemble-Learning-Based Method for Short-Term Water Demand Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1757-1773, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:38:y:2002:i:4:p:407-420. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.