IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i11d10.1007_s11269-024-03858-0.html
   My bibliography  Save this article

Hybrid Approach for Streamflow Prediction: LASSO-Hampel Filter Integration with Support Vector Machines, Artificial Neural Networks, and Autoregressive Distributed Lag Models

Author

Listed:
  • Maha Shabbir

    (University of the Punjab)

  • Sohail Chand

    (University of the Punjab)

  • Farhat Iqbal

    (Imam Abulrahman Bin Faisal University
    Imam Abulrahman Bin Faisal University)

  • Ozgur Kisi

    (Luebeck University of Applied Sciences
    Ilia State University)

Abstract

The generation of streamflow is linked with different factors such as water level, rainfall intensity, meteorological variables, and many more. In this study, we have developed a new hybrid approach (named LASSO-HF-SAA) by integrating the least absolute shrinkage and selection operator (LASSO) and Hampel filter (HF) with three data-driven models i.e. support vector machine (SVM), artificial neural network (ANN) and autoregressive distributed lag (ARDL). Firstly, LASSO selects meteorological variables important in daily streamflow prediction. Next, the HF detects and correct outliers in the variables to handle the randomness and noise of data. Thirdly, the HF-corrected data is fed to SVM, ANN, and ARDL models to obtain the predictions of the proposed LASSO-HF-SVM, LASSO-HF-ANN, and LASSO-HF-ARDL models. The performance of these models is checked using performance indices and the Diebold-Mariano (DM) test. The proposed hybrid approach is illustrated on the streamflow data of the Kabul River (Nowshera station) of Pakistan. Based on Nash-Sutcliffe efficiency (NSE), it is revealed that the prediction accuracy of the LASSO-HF-SVM hybrid model (NSE = 0.52) is better than SVM (NSE = 0.43), HF-SVM (NSE = 0.49) and LASSO-SVM (NSE = 0.47) models in testing phase. Similar findings are for the proposed LASSO-HF-ARDL and LASSO-HF-ANN hybrid models. Overall, the suggested LASSO-HF-ARDL hybrid model has shown winning performance compared to all models in the study. The root mean squared error (RMSE) and NSE of the proposed LASSO-HF-ARDL model is 443.5m3/s and 0.68 on the test data. The DM test confirms that the prediction accuracy of the proposed hybrid models is better than their respective single, HF-based, and LASSO-based models versions of SVM, ANN, and ARDL models respectively.

Suggested Citation

  • Maha Shabbir & Sohail Chand & Farhat Iqbal & Ozgur Kisi, 2024. "Hybrid Approach for Streamflow Prediction: LASSO-Hampel Filter Integration with Support Vector Machines, Artificial Neural Networks, and Autoregressive Distributed Lag Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4179-4196, September.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:11:d:10.1007_s11269-024-03858-0
    DOI: 10.1007/s11269-024-03858-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03858-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03858-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan, Jikai & Zuo, Hongchao & Bai, Yulong & Duan, Jizheng & Chang, Mingheng & Chen, Bolong, 2021. "Short-term wind speed forecasting using recurrent neural networks with error correction," Energy, Elsevier, vol. 217(C).
    2. Yani Lian & Jungang Luo & Jingmin Wang & Ganggang Zuo & Na Wei, 2022. "Climate-driven Model Based on Long Short-Term Memory and Bayesian Optimization for Multi-day-ahead Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 21-37, January.
    3. Anas Mahmood Al-Juboori, 2021. "A Hybrid Model to Predict Monthly Streamflow Using Neighboring Rivers Annual Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 729-743, January.
    4. He, Yaoyao & Qin, Yang & Wang, Shuo & Wang, Xu & Wang, Chao, 2019. "Electricity consumption probability density forecasting method based on LASSO-Quantile Regression Neural Network," Applied Energy, Elsevier, vol. 233, pages 565-575.
    5. Maha Shabbir & Sohail Chand & Farhat Iqbal, 2022. "A Novel Hybrid Method for River Discharge Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 253-272, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingyuan Wang & Longnv Huang & Jiehui Huang & Qiaoan Liu & Limin Chen & Yin Liang & Peter X. Liu & Chunquan Li, 2022. "A Hybrid Generative Adversarial Network Model for Ultra Short-Term Wind Speed Prediction," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    2. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    3. Tian, Zhongda & Chen, Hao, 2021. "Multi-step short-term wind speed prediction based on integrated multi-model fusion," Applied Energy, Elsevier, vol. 298(C).
    4. Li, Ke & Shen, Ruifang & Wang, Zhenguo & Yan, Bowen & Yang, Qingshan & Zhou, Xuhong, 2023. "An efficient wind speed prediction method based on a deep neural network without future information leakage," Energy, Elsevier, vol. 267(C).
    5. Bai, Yulong & Liu, Ming-De & Ding, Lin & Ma, Yong-Jie, 2021. "Double-layer staged training echo-state networks for wind speed prediction using variational mode decomposition," Applied Energy, Elsevier, vol. 301(C).
    6. Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
    7. Ding, Lili & Zhao, Zhongchao & Han, Meng, 2021. "Probability density forecasts for steam coal prices in China: The role of high-frequency factors," Energy, Elsevier, vol. 220(C).
    8. Lu, Linna & Lei, Yalin & Yang, Yang & Zheng, Haoqi & Wang, Wen & Meng, Yan & Meng, Chunhong & Zha, Liqiang, 2023. "Assessing nickel sector index volatility based on quantile regression for Garch and Egarch models: Evidence from the Chinese stock market 2018–2022," Resources Policy, Elsevier, vol. 82(C).
    9. Wang, Yunqi & Qiu, Jing & Tao, Yuechuan, 2022. "Robust energy systems scheduling considering uncertainties and demand side emission impacts," Energy, Elsevier, vol. 239(PD).
    10. He, Feifei & Zhou, Jianzhong & Mo, Li & Feng, Kuaile & Liu, Guangbiao & He, Zhongzheng, 2020. "Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest," Applied Energy, Elsevier, vol. 262(C).
    11. Xingcai Zhou & Jiangyan Wang, 2021. "Panel semiparametric quantile regression neural network for electricity consumption forecasting," Papers 2103.00711, arXiv.org.
    12. Liu, Wenhui & Bai, Yulong & Yue, Xiaoxin & Wang, Rui & Song, Qi, 2024. "A wind speed forcasting model based on rime optimization based VMD and multi-headed self-attention-LSTM," Energy, Elsevier, vol. 294(C).
    13. Franz Harke & Philipp Otto, 2023. "Solar Self-Sufficient Households as a Driving Factor for Sustainability Transformation," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    14. Wu, Wen-Ze & Pang, Haodan & Zheng, Chengli & Xie, Wanli & Liu, Chong, 2021. "Predictive analysis of quarterly electricity consumption via a novel seasonal fractional nonhomogeneous discrete grey model: A case of Hubei in China," Energy, Elsevier, vol. 229(C).
    15. Wu, Huijuan & Meng, Keqilao & Fan, Daoerji & Zhang, Zhanqiang & Liu, Qing, 2022. "Multistep short-term wind speed forecasting using transformer," Energy, Elsevier, vol. 261(PA).
    16. Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
    17. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    18. Imani, Maryam, 2021. "Electrical load-temperature CNN for residential load forecasting," Energy, Elsevier, vol. 227(C).
    19. Yan, Bowen & Shen, Ruifang & Li, Ke & Wang, Zhenguo & Yang, Qingshan & Zhou, Xuhong & Zhang, Le, 2023. "Spatio-temporal correlation for simultaneous ultra-short-term wind speed prediction at multiple locations," Energy, Elsevier, vol. 284(C).
    20. Wu, Jie & Li, Na & Zhao, Yan & Wang, Jujie, 2022. "Usage of correlation analysis and hypothesis test in optimizing the gated recurrent unit network for wind speed forecasting," Energy, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:11:d:10.1007_s11269-024-03858-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.