IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i13d10.1007_s11269-021-02967-4.html
   My bibliography  Save this article

Incorporating Social System into Water-Food-Energy Nexus

Author

Listed:
  • Amir Molajou

    (Iran University of Science & Technology)

  • Parsa Pouladi

    (Purdue University
    Purdue University)

  • Abbas Afshar

    (Iran University of Science & Technology)

Abstract

The current study introduces a conceptual socio-hydrological-based framework for the water-energy-food (WEF) nexus. The proposed conceptual framework aims to investigate how farmers' dynamic agricultural activities under different socio-economic conditions affect the WEF systems. The WEF nexus model has been integrated with an Agent-Based Model, reflecting the farmers’ agricultural activities. Furthermore, the agent-based model benefits from Association Rule Mining to define farmer agents’ agricultural decision-making in various conditions. The processes within the WEF nexus are simultaneously physical, socio-economic, ecological, and political. Indeed, there are interrelated interactions among the mentioned processes in ways that have not yet been properly delineated and mapped. Thus, to obtain sustainable outcomes, the current study investigates trade-offs among natural resources and social systems in the WEF nexus approach. The proposed socio-hydrological WEF nexus framework may provide more in-depth future insights for policy-makers through capturing bidirectional feedbacks among farmers and WEF systems. In other words, the proposed framework can help policymakers to capture the dynamic impacts of agricultural activities by farmers on the WEF nexus, which may vary due to different socio-economic conditions.

Suggested Citation

  • Amir Molajou & Parsa Pouladi & Abbas Afshar, 2021. "Incorporating Social System into Water-Food-Energy Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4561-4580, October.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:13:d:10.1007_s11269-021-02967-4
    DOI: 10.1007/s11269-021-02967-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02967-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02967-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. L. Wolfe & K. C. Ting & N. Scott & A. Sharpley & J. W. Jones & L. Verma, 2016. "Engineering solutions for food-energy-water systems: it is more than engineering," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 172-182, March.
    2. Sebastian Biba, 2016. "The goals and reality of the water–food–energy security nexus: the case of China and its southern neighbours," Third World Quarterly, Taylor & Francis Journals, vol. 37(1), pages 51-70, January.
    3. Kuil, Linda & Carr, Gemma & Prskawetz, Alexia & Salinas, José Luis & Viglione, Alberto & Blöschl, Günter, 2019. "Learning from the Ancient Maya: Exploring the Impact of Drought on Population Dynamics," Ecological Economics, Elsevier, vol. 157(C), pages 1-16.
    4. Amir AghaKouchak & David Feldman & Martin Hoerling & Travis Huxman & Jay Lund, 2015. "Water and climate: Recognize anthropogenic drought," Nature, Nature, vol. 524(7566), pages 409-411, August.
    5. Mark Howells & Sebastian Hermann & Manuel Welsch & Morgan Bazilian & Rebecka Segerström & Thomas Alfstad & Dolf Gielen & Holger Rogner & Guenther Fischer & Harrij van Velthuizen & David Wiberg & Charl, 2013. "Integrated analysis of climate change, land-use, energy and water strategies," Nature Climate Change, Nature, vol. 3(7), pages 621-626, July.
    6. Aries Purwanto & Janez Sušnik & Franciscus X. Suryadi & Charlotte de Fraiture, 2021. "Water-Energy-Food Nexus: Critical Review, Practical Applications, and Prospects for Future Research," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    7. Joseph Bakarji & Daniel O’Malley & Velimir V. Vesselinov, 2017. "Agent-Based Socio-Hydrological Hybrid Modeling for Water Resource Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3881-3898, September.
    8. Yusuf Alizade Govarchin Ghale & Abdusselam Altunkaynak & Alper Unal, 2018. "Investigation Anthropogenic Impacts and Climate Factors on Drying up of Urmia Lake using Water Budget and Drought Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 325-337, January.
    9. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    10. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    11. Shang, Yizi & Hei, Pengfei & Lu, Shibao & Shang, Ling & Li, Xiaofei & Wei, Yongping & Jia, Dongdong & Jiang, Dong & Ye, Yuntao & Gong, Jiaguo & Lei, Xiaohui & Hao, Mengmeng & Qiu, Yaqin & Liu, Jiahong, 2018. "China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050," Applied Energy, Elsevier, vol. 210(C), pages 643-660.
    12. Samaneh Ashraf & Amir AghaKouchak & Ali Nazemi & Ali Mirchi & Mojtaba Sadegh & Hamed R. Moftakhari & Elmira Hassanzadeh & Chi-Yuan Miao & Kaveh Madani & Mohammad Mousavi Baygi & Hassan Anjileli & Davo, 2019. "Compounding effects of human activities and climatic changes on surface water availability in Iran," Climatic Change, Springer, vol. 152(3), pages 379-391, March.
    13. Farzad Emami & Manfred Koch, 2018. "Agricultural Water Productivity-Based Hydro-Economic Modeling for Optimal Crop Pattern and Water Resources Planning in the Zarrine River Basin, Iran, in the Wake of Climate Change," Sustainability, MDPI, vol. 10(11), pages 1-32, October.
    14. Ali Karnib, 2018. "Bridging Science and Policy in Water-Energy-Food Nexus: Using the Q-Nexus Model for Informing Policy Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4895-4909, December.
    15. Vahid Nourani & Mohammad Taghi Sattari & Amir Molajou, 2017. "Threshold-Based Hybrid Data Mining Method for Long-Term Maximum Precipitation Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2645-2658, July.
    16. Kurian, Mathew, 2017. "The water-energy-food nexus," Environmental Science & Policy, Elsevier, vol. 68(C), pages 97-106.
    17. Martinez-Hernandez, Elias & Leach, Matthew & Yang, Aidong, 2017. "Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym," Applied Energy, Elsevier, vol. 206(C), pages 1009-1021.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grace B. Villamor, 2023. "Gender and Water-Energy-Food Nexus in the Rural Highlands of Ethiopia: Where Are the Trade-Offs?," Land, MDPI, vol. 12(3), pages 1-20, February.
    2. Oriza Candra & Abdeljelil Chammam & José Ricardo Nuñez Alvarez & Iskandar Muda & Hikmet Ş. Aybar, 2023. "The Impact of Renewable Energy Sources on the Sustainable Development of the Economy and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 15(3), pages 1-11, January.
    3. Vadim V. Ponkratov & Alexey S. Kuznetsov & Iskandar Muda & Miftahul Jannah Nasution & Mohammed Al-Bahrani & Hikmet Ş. Aybar, 2022. "Investigating the Index of Sustainable Development and Reduction in Greenhouse Gases of Renewable Energies," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
    4. Ngakan Ketut Acwin Dwijendra & Untung Rahardja & Narukullapati Bharath Kumar & Indrajit Patra & Musaddak Maher Abdul Zahra & Yulia Finogenova & John William Grimaldo Guerrero & Samar Emad Izzat & Taif, 2022. "An Analysis of Urban Block Initiatives Influencing Energy Consumption and Solar Energy Absorption," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    5. Oriza Candra & Narukullapati Bharath Kumar & Ngakan Ketut Acwin Dwijendra & Indrajit Patra & Ali Majdi & Untung Rahardja & Mikhail Kosov & John William Grimaldo Guerrero & Ramaswamy Sivaraman, 2022. "Energy Simulation and Parametric Analysis of Water Cooled Thermal Photovoltaic Systems: Energy and Exergy Analysis of Photovoltaic Systems," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    6. Yaxin Shi & Suning Liu & Haiyun Shi, 2022. "Analysis of the Water-Food-Energy Nexus and Water Competition Based on a Bayesian Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3349-3366, July.
    7. Wongchai Anupong & Iskandar Muda & Sabah Auda AbdulAmeer & Ibrahim H. Al-Kharsan & Aníbal Alviz-Meza & Yulineth Cárdenas-Escrocia, 2023. "Energy Consumption and Carbon Dioxide Production Optimization in an Educational Building Using the Supported Vector Machine and Ant Colony System," Sustainability, MDPI, vol. 15(4), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tong & Tan, Qian & Yu, Xiaoning & Zhang, Shan, 2020. "Synergy assessment and optimization for water-energy-food nexus: Modeling and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Cássia Juliana Fernandes Torres & Camilla Hellen Peixoto de Lima & Bárbara Suzart de Almeida Goodwin & Terencio Rebello de Aguiar Junior & Andrea Sousa Fontes & Daniel Veras Ribeiro & Rodrigo Saldanha, 2019. "A Literature Review to Propose a Systematic Procedure to Develop “Nexus Thinking” Considering the Water–Energy–Food Nexus," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    3. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Aurobrata Das & Bhabagrahi Sahoo & Sudhindra N. Panda, 2020. "Evaluation of Nexus-Sustainability and Conventional Approaches for Optimal Water-Energy-Land-Crop Planning in an Irrigated Canal Command," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2329-2351, June.
    6. Jing Zhu & Shenghong Kang & Wenwu Zhao & Qiujie Li & Xinyuan Xie & Xiangping Hu, 2020. "A Bibliometric Analysis of Food–Energy–Water Nexus: Progress and Prospects," Land, MDPI, vol. 9(12), pages 1-22, December.
    7. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    8. Schlör, Holger & Venghaus, Sandra, 2022. "Measuring resilience in the food-energy-water nexus based on ethical values and trade relations," Applied Energy, Elsevier, vol. 323(C).
    9. Junlian Gao & Xiangyang Xu & Guiying Cao & Yurii M. Ermoliev & Tatiana Y. Ermolieva & Elena A. Rovenskaya, 2018. "Optimizing Regional Food and Energy Production under Limited Water Availability through Integrated Modeling," Sustainability, MDPI, vol. 10(6), pages 1-12, May.
    10. Wang, Saige & Chen, Bin, 2021. "Unraveling energy–water nexus paths in urban agglomeration: A case study of Beijing–Tianjin–Hebei," Applied Energy, Elsevier, vol. 304(C).
    11. Bao, Keyu & Thrän, Daniela & Schröter, Bastian, 2023. "Land resource allocation between biomass and ground-mounted PV under consideration of the food–water–energy nexus framework at regional scale," Renewable Energy, Elsevier, vol. 203(C), pages 323-333.
    12. Yaya Feng & Fanglei Zhong & Chunlin Huang & Juan Gu & Yingchun Ge & Xiaoyu Song, 2020. "Spatiotemporal Distribution and the Driving Force of the Food-Energy-Water Nexus Index in Zhangye, Northwest China," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    13. Bassel Daher & Rabi H. Mohtar & Efstratios N. Pistikopoulos & Kent E. Portney & Ronald Kaiser & Walid Saad, 2018. "Developing Socio-Techno-Economic-Political (STEP) Solutions for Addressing Resource Nexus Hotspots," Sustainability, MDPI, vol. 10(2), pages 1-14, February.
    14. Shasha Xu & Weijun He & Juqin Shen & Dagmawi Mulugeta Degefu & Liang Yuan & Yang Kong, 2019. "Coupling and Coordination Degrees of the Core Water–Energy–Food Nexus in China," IJERPH, MDPI, vol. 16(9), pages 1-18, May.
    15. Zhou, Yanlai & Chang, Li-Chiu & Uen, Tin-Shuan & Guo, Shenglian & Xu, Chong-Yu & Chang, Fi-John, 2019. "Prospect for small-hydropower installation settled upon optimal water allocation: An action to stimulate synergies of water-food-energy nexus," Applied Energy, Elsevier, vol. 238(C), pages 668-682.
    16. Farhad Yazdandoost & Sogol Moradian & Ardalan Izadi, 2020. "Evaluation of Water Sustainability under a Changing Climate in Zarrineh River Basin, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4831-4846, December.
    17. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    18. Di Felice, Louisa Jane & Ripa, Maddalena & Giampietro, Mario, 2019. "An alternative to market-oriented energy models: Nexus patterns across hierarchical levels," Energy Policy, Elsevier, vol. 126(C), pages 431-443.
    19. Gao, Tong & Fang, Delin & Chen, Bin, 2020. "Multi-regional input-output and linkage analysis for water-PM2.5 nexus," Applied Energy, Elsevier, vol. 268(C).
    20. Junfei Chen & Tonghui Ding & Huimin Wang & Xiaoya Yu, 2019. "Research on Total Factor Productivity and Influential Factors of the Regional Water–Energy–Food Nexus: A Case Study on Inner Mongolia, China," IJERPH, MDPI, vol. 16(17), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:13:d:10.1007_s11269-021-02967-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.