IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15074-d972483.html
   My bibliography  Save this article

Energy Simulation and Parametric Analysis of Water Cooled Thermal Photovoltaic Systems: Energy and Exergy Analysis of Photovoltaic Systems

Author

Listed:
  • Oriza Candra

    (Department Teknik Elektro, Universitas Negeri Padang, Padang 25131, Indonesia)

  • Narukullapati Bharath Kumar

    (Department of Electrical and Electronics Engineering, Vignan’s Foundation for Science Technology and Research, Guntur 522213, India)

  • Ngakan Ketut Acwin Dwijendra

    (Department of Architecture, Faculty of Engineering, Udayana University, Bali 80361, Indonesia)

  • Indrajit Patra

    (An Independent Researcher, National Institute of Technology (NIT) Durgapur, Durgapur 713209, India)

  • Ali Majdi

    (Department of Building and Construction Techniques Engineering, Al-Mustaqbal University College, Hilla 51001, Iraq)

  • Untung Rahardja

    (Faculty of Science and Technology, University of Raharja, Banten 15117, Indonesia)

  • Mikhail Kosov

    (Department of State and Municipal Finance, Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997 Moscow, Russia
    Department of Public Finance, Financial University under the Government of the Russian Federation, 080002 Moscow, Russia)

  • John William Grimaldo Guerrero

    (Department of Energy, Universidad de la Costa, Barranquilla 080002, Colombia)

  • Ramaswamy Sivaraman

    (Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras, Chennai 600005, India)

Abstract

It is generally agreed that solar energy, which can be converted into usable electricity by means of solar panels, is one of the most important renewable energy sources. An energy and exergy study of these panels is the first step in developing this technology. This will provide a fair standard by which solar panel efficiency can be evaluated. In this study, the MATLAB tool was used to find the answers to the math problems that describe this system. The system’s efficiency has been calculated using the modeled data created in MATLAB. When solving equations, the initial value of the independent system parameters is fed into the computer in accordance with the algorithm of the program. A simulation and a parametric analysis of a thermal PV system with a sheet and spiral tube configuration have been completed. Simulations based on a numerical model have been run to determine where precisely the sheet and helical tubes should be placed in a PV/T system configured for cold water. Since then, the MATLAB code for the proposed model has been developed, and it agrees well with the experimental data. There is an RMSE of 0.94 for this model. The results indicate that the modeled sample achieves a thermal efficiency of between 43% and 52% and an electrical efficiency of between 11% and 11.5%.

Suggested Citation

  • Oriza Candra & Narukullapati Bharath Kumar & Ngakan Ketut Acwin Dwijendra & Indrajit Patra & Ali Majdi & Untung Rahardja & Mikhail Kosov & John William Grimaldo Guerrero & Ramaswamy Sivaraman, 2022. "Energy Simulation and Parametric Analysis of Water Cooled Thermal Photovoltaic Systems: Energy and Exergy Analysis of Photovoltaic Systems," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15074-:d:972483
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15074/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15074/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Firoozzadeh, Mohammad & Shiravi, Amir Hossein & Lotfi, Marzieh & Aidarova, Saule & Sharipova, Altynay, 2021. "Optimum concentration of carbon black aqueous nanofluid as coolant of photovoltaic modules: A case study," Energy, Elsevier, vol. 225(C).
    2. Said, Zafar & Arora, Sahil & Bellos, Evangelos, 2018. "A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 302-316.
    3. Mohammad Hosein Mohammadnezami & Mehdi Ali Ehyaei & Marc A. Rosen & Mohammad Hossein Ahmadi, 2015. "Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System," Sustainability, MDPI, vol. 7(3), pages 1-16, March.
    4. Mohammadmehdi Seyedmahmoudian & Saad Mekhilef & Rasoul Rahmani & Rubiyah Yusof & Ehsan Taslimi Renani, 2013. "Analytical Modeling of Partially Shaded Photovoltaic Systems," Energies, MDPI, vol. 6(1), pages 1-17, January.
    5. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities," Energies, MDPI, vol. 14(13), pages 1-48, June.
    6. Amir Molajou & Parsa Pouladi & Abbas Afshar, 2021. "Incorporating Social System into Water-Food-Energy Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4561-4580, October.
    7. Ali Kareem Abdulrazzaq & Balázs Plesz & György Bognár, 2020. "A Novel Method for Thermal Modelling of Photovoltaic Modules/Cells under Varying Environmental Conditions," Energies, MDPI, vol. 13(13), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Liu & Niu, Jianlei & Wu, Jian-Yong, 2023. "Improving energy efficiency of photovoltaic/thermal systems by cooling with PCM nano-emulsions: An indoor experimental study," Renewable Energy, Elsevier, vol. 203(C), pages 568-582.
    2. Vadim V. Ponkratov & Alexey S. Kuznetsov & Iskandar Muda & Miftahul Jannah Nasution & Mohammed Al-Bahrani & Hikmet Ş. Aybar, 2022. "Investigating the Index of Sustainable Development and Reduction in Greenhouse Gases of Renewable Energies," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
    3. Weng-Hooi Tan & Junita Mohamad-Saleh, 2023. "Critical Review on Interrelationship of Electro-Devices in PV Solar Systems with Their Evolution and Future Prospects for MPPT Applications," Energies, MDPI, vol. 16(2), pages 1-37, January.
    4. Andrea Bonfiglio & Massimo Brignone & Marco Invernizzi & Alessandro Labella & Daniele Mestriner & Renato Procopio, 2017. "A Simplified Microgrid Model for the Validation of Islanded Control Logics," Energies, MDPI, vol. 10(8), pages 1-28, August.
    5. Kaplanis, S. & Kaplani, E. & Kaldellis, J.K., 2022. "PV temperature and performance prediction in free-standing, BIPV and BAPV incorporating the effect of temperature and inclination on the heat transfer coefficients and the impact of wind, efficiency a," Renewable Energy, Elsevier, vol. 181(C), pages 235-249.
    6. Azaioud, Hakim & Farnam, Arash & Knockaert, Jos & Vandevelde, Lieven & Desmet, Jan, 2024. "Efficiency optimisation and converterless PV integration by applying a dynamic voltage on an LVDC backbone," Applied Energy, Elsevier, vol. 356(C).
    7. Abdulhamid Atia & Fatih Anayi & Min Gao, 2022. "Influence of Shading on Solar Cell Parameters and Modelling Accuracy Improvement of PV Modules with Reverse Biased Solar Cells," Energies, MDPI, vol. 15(23), pages 1-19, November.
    8. Moreira, Hugo Soeiro & Lucas de Souza Silva, João & Gomes dos Reis, Marcos Vinicios & de Bastos Mesquita, Daniel & Kikumoto de Paula, Bruno Henrique & Villalva, Marcelo Gradella, 2021. "Experimental comparative study of photovoltaic models for uniform and partially shading conditions," Renewable Energy, Elsevier, vol. 164(C), pages 58-73.
    9. Piotr Kułyk & Łukasz Augustowski, 2021. "Economic Profitability of a Hybrid Approach to Powering Residual Households from Natural Sources in Two Wind Zones of the Lubuskie Voivodeship in Poland," Energies, MDPI, vol. 14(21), pages 1-15, October.
    10. Shiravi, Amir Hossein & Firoozzadeh, Mohammad & Lotfi, Marzieh, 2022. "Experimental study on the effects of air blowing and irradiance intensity on the performance of photovoltaic modules, using Central Composite Design," Energy, Elsevier, vol. 238(PA).
    11. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Shahsavar, Amin & Jha, Prabhakar & Arici, Muslum & Kefayati, Gholamreza, 2021. "A comparative experimental investigation of energetic and exergetic performances of water/magnetite nanofluid-based photovoltaic/thermal system equipped with finned and unfinned collectors," Energy, Elsevier, vol. 220(C).
    14. Mingrui Zhang & Zheyang Chen & Li Wei, 2019. "An Immune Firefly Algorithm for Tracking the Maximum Power Point of PV Array under Partial Shading Conditions," Energies, MDPI, vol. 12(16), pages 1-15, August.
    15. Xiaoguang Liu & Yuefeng Wang, 2019. "Reconfiguration Method to Extract More Power from Partially Shaded Photovoltaic Arrays with Series-Parallel Topology," Energies, MDPI, vol. 12(8), pages 1-16, April.
    16. Mariam A. Sameh & Mostafa I. Marei & M. A. Badr & Mahmoud A. Attia, 2021. "An Optimized PV Control System Based on the Emperor Penguin Optimizer," Energies, MDPI, vol. 14(3), pages 1-16, February.
    17. Ghorbani, Bahram & Zendehboudi, Sohrab & Moradi, Mostafa, 2021. "Development of an integrated structure of hydrogen and oxygen liquefaction cycle using wind turbines, Kalina power generation cycle, and electrolyzer," Energy, Elsevier, vol. 221(C).
    18. Oriza Candra & Abdeljelil Chammam & José Ricardo Nuñez Alvarez & Iskandar Muda & Hikmet Ş. Aybar, 2023. "The Impact of Renewable Energy Sources on the Sustainable Development of the Economy and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 15(3), pages 1-11, January.
    19. Said, Zafar & El Haj Assad, M. & Hachicha, Ahmed Amine & Bellos, Evangelos & Abdelkareem, Mohammad Ali & Alazaizeh, Duha Zeyad & Yousef, Bashria A.A., 2019. "Enhancing the performance of automotive radiators using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 183-194.
    20. Yi Song Liu & Tan Yigitcanlar & Mirko Guaralda & Kenan Degirmenci & Aaron Liu & Michael Kane, 2022. "Leveraging the Opportunities of Wind for Cities through Urban Planning and Design: A PRISMA Review," Sustainability, MDPI, vol. 14(18), pages 1-78, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15074-:d:972483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.