IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2309-d332999.html
   My bibliography  Save this article

Spatiotemporal Distribution and the Driving Force of the Food-Energy-Water Nexus Index in Zhangye, Northwest China

Author

Listed:
  • Yaya Feng

    (Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    University of Chinese Academy of Sciences, Beijing 100000, China)

  • Fanglei Zhong

    (School of Economics, Lanzhou University, Lanzhou 730000, China)

  • Chunlin Huang

    (Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Juan Gu

    (Key Laboratory of Western China’s Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou 730000, China)

  • Yingchun Ge

    (Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Xiaoyu Song

    (Scientific Information Center, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China)

Abstract

For more efficient development planning, food-energy-water (FEW) nexus indicators should be provided with higher spatial and temporal resolutions. This paper takes Zhangye, a typical oasis city in Northwest China’s arid region, as an example, and uses the unweighted, geometric mean method to calculate a standardized, quantitative, and transparent estimation of the FEW nexus for each county. The role of influencing factors is also analyzed. The results showed that (1) the coordination of the FEW nexus in each county gradually increased from 2005 to 2015. Spatially, the distribution of the FEW nexus showed a tendency to be higher in the southwestern region and lower in the northeastern region. (2) Food security and water security were weaker than energy security. Specifically, there were more limitations to food accessibility, water availability, and water accessibility than for other indexes. (3) The FEW indexes are positively associated with per capita GDP (Gross Domestic Product) and negatively correlated with the average evaporation and altitude of each county (district). Decision makers should concentrate on combining industrial advantages, developing water-efficient ecological agriculture, and improving production quality to increase market competitiveness and should actively explore the international market.

Suggested Citation

  • Yaya Feng & Fanglei Zhong & Chunlin Huang & Juan Gu & Yingchun Ge & Xiaoyu Song, 2020. "Spatiotemporal Distribution and the Driving Force of the Food-Energy-Water Nexus Index in Zhangye, Northwest China," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2309-:d:332999
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2309/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2309/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan Chang & Guijun Li & Yuan Yao & Lixiao Zhang & Chang Yu, 2016. "Quantifying the Water-Energy-Food Nexus: Current Status and Trends," Energies, MDPI, vol. 9(2), pages 1-17, January.
    2. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    3. Ringler, C. & Willenbockel, D. & Perez, N. & Rosegrant, M. & Zhu, T. & Matthews, Nathanial, "undated". "Global linkages among energy, food and water: an economic assessment," Papers published in Journals (Open Access) H047781, International Water Management Institute.
    4. Guijun Li & Daohan Huang & Yulong Li, 2016. "China’s Input-Output Efficiency of Water-Energy-Food Nexus Based on the Data Envelopment Analysis (DEA) Model," Sustainability, MDPI, vol. 8(9), pages 1-16, September.
    5. Kurian, Mathew, 2017. "The water-energy-food nexus," Environmental Science & Policy, Elsevier, vol. 68(C), pages 97-106.
    6. Aiko Endo & Kimberly Burnett & Pedcris M. Orencio & Terukazu Kumazawa & Christopher Wada & Akira Ishii & Izumi Tsurita & Makoto Taniguchi, 2015. "Methods of the Water-Energy-Food Nexus," Working Papers 2015-12, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    7. Kaddoura, Saeed & El Khatib, Sameh, 2017. "Review of water-energy-food Nexus tools to improve the Nexus modelling approach for integrated policy making," Environmental Science & Policy, Elsevier, vol. 77(C), pages 114-121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Zhu & Shenghong Kang & Wenwu Zhao & Qiujie Li & Xinyuan Xie & Xiangping Hu, 2020. "A Bibliometric Analysis of Food–Energy–Water Nexus: Progress and Prospects," Land, MDPI, vol. 9(12), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tong & Tan, Qian & Yu, Xiaoning & Zhang, Shan, 2020. "Synergy assessment and optimization for water-energy-food nexus: Modeling and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Cássia Juliana Fernandes Torres & Camilla Hellen Peixoto de Lima & Bárbara Suzart de Almeida Goodwin & Terencio Rebello de Aguiar Junior & Andrea Sousa Fontes & Daniel Veras Ribeiro & Rodrigo Saldanha, 2019. "A Literature Review to Propose a Systematic Procedure to Develop “Nexus Thinking” Considering the Water–Energy–Food Nexus," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    3. Martinez-Hernandez, Elias & Leach, Matthew & Yang, Aidong, 2017. "Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym," Applied Energy, Elsevier, vol. 206(C), pages 1009-1021.
    4. Junlian Gao & Xiangyang Xu & Guiying Cao & Yurii M. Ermoliev & Tatiana Y. Ermolieva & Elena A. Rovenskaya, 2018. "Optimizing Regional Food and Energy Production under Limited Water Availability through Integrated Modeling," Sustainability, MDPI, vol. 10(6), pages 1-12, May.
    5. Hongfang Li & Huixiao Wang & Yaxue Yang & Ruxin Zhao, 2021. "Regional Coordination and Security of Water–Energy–Food Symbiosis in Northeastern China," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    6. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Aurobrata Das & Bhabagrahi Sahoo & Sudhindra N. Panda, 2020. "Evaluation of Nexus-Sustainability and Conventional Approaches for Optimal Water-Energy-Land-Crop Planning in an Irrigated Canal Command," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2329-2351, June.
    8. Srigiri, Srinivasa Reddy & Dombrowsky, Ines, 2021. "Governance of the water-energy-food nexus for an integrated implementation of the 2030 Agenda: Conceptual and methodological framework for analysis," IDOS Discussion Papers 2/2021, German Institute of Development and Sustainability (IDOS).
    9. Maria Maddalena Tortorella & Senatro Di Leo & Carmelina Cosmi & Patrícia Fortes & Mauro Viccaro & Mario Cozzi & Filomena Pietrapertosa & Monica Salvia & Severino Romano, 2020. "A Methodological Integrated Approach to Analyse Climate Change Effects in Agri-Food Sector: The TIMES Water-Energy-Food Module," IJERPH, MDPI, vol. 17(21), pages 1-21, October.
    10. Cai, Yanpeng & Cai, Jianying & Xu, Linyu & Tan, Qian & Xu, Qiao, 2019. "Integrated risk analysis of water-energy nexus systems based on systems dynamics, orthogonal design and copula analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 125-137.
    11. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    12. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    13. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    14. Meng, Fanxin & Wang, Dongfang & Meng, Xiaoyan & Li, Hui & Liu, Gengyuan & Yuan, Qiuling & Hu, Yuanchao & Zhang, Yi, 2022. "Mapping urban energy–water–land nexus within a multiscale economy: A case study of four megacities in China," Energy, Elsevier, vol. 239(PB).
    15. Isabella Georgiou & Serena Caucci & Jonathan Clive Morris & Edeltraud Guenther & Peter Krebs, 2023. "Assessing the Potential of Water Reuse Uptake Through a Private–Public Partnership: a Practitioner’s Perspective," Circular Economy and Sustainability, Springer, vol. 3(1), pages 199-220, March.
    16. Padmanathan Kasinathan & Rishi Pugazhendhi & Rajvikram Madurai Elavarasan & Vigna Kumaran Ramachandaramurthy & Vinoth Ramanathan & Senthilkumar Subramanian & Sachin Kumar & Kamalakannan Nandhagopal & , 2022. "Realization of Sustainable Development Goals with Disruptive Technologies by Integrating Industry 5.0, Society 5.0, Smart Cities and Villages," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    17. Siderius, Christian & Conway, Declan & Yassine, Mohamed & Murken, Lisa & Lostis, Pierre-Louis & Dalin, Carole, 2020. "Multi-scale analysis of the water-energy-food nexus in the Gulf region," LSE Research Online Documents on Economics 104091, London School of Economics and Political Science, LSE Library.
    18. Bazzana, Davide & Zaitchik, Benjamin & Gilioli, Gianni, 2020. "Impact of water and energy infrastructure on local well-being: an agent-based analysis of the water-energy-food nexus," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 165-176.
    19. Dirk Willenbockel & Claudia Ringler & Nikos Perez & Mark Rosegrant & Tingiu Zhu & Nathanial Matthews, 2016. "Climate Policy and the Energy-Water-Food Nexus: A Model Linkage Approach," EcoMod2016 9746, EcoMod.
    20. Evelyn Corona-López & Alma D. Román-Gutiérrez & Elena M. Otazo-Sánchez & Fabiola A. Guzmán-Ortiz & Otilio A. Acevedo-Sandoval, 2021. "Water–Food Nexus Assessment in Agriculture: A Systematic Review," IJERPH, MDPI, vol. 18(9), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2309-:d:332999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.