IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14273-d960175.html
   My bibliography  Save this article

An Analysis of Urban Block Initiatives Influencing Energy Consumption and Solar Energy Absorption

Author

Listed:
  • Ngakan Ketut Acwin Dwijendra

    (Department of Architecture, Faculty of Engineering, Udayana University, Bali 80361, Indonesia)

  • Untung Rahardja

    (Faculty of Science and Technology, University of Raharja, Banten 15117, Indonesia)

  • Narukullapati Bharath Kumar

    (Department of Electrical and Electronics Engineering, University of Vignan’s Foundation for Science, Technology and Research, Guntur 522213, India)

  • Indrajit Patra

    (NIT Durgapur, Durgapur 713209, India)

  • Musaddak Maher Abdul Zahra

    (Computer Techniques Engineering Department, Al-Mustaqbal University College, Hillah 51001, Iraq)

  • Yulia Finogenova

    (Department of State and Municipal Finance, Plekhanov Russian University of Economics, Moscow 117997, Russia)

  • John William Grimaldo Guerrero

    (Department of Energy, Universidad de la Costa, Barranquilla 080001, Colombia)

  • Samar Emad Izzat

    (Department of State and Municipal Finance, Al-Nisour University College, Baghdad 10001, Iraq)

  • Taif Alawsi

    (Scientific Research Center, Al-Ayen University, Thi-Qar 64001, Iraq)

Abstract

Population growth and urbanization cause developing-country cities to create energy-intensive buildings. Building energy efficiency can be improved through active and passive solar design to reduce energy consumption, increase equipment efficiency, and utilize renewable energy, converting renewable energy into thermal energy or electricity. In this study, passive architecture was evaluated for both urban block and building energy usage. When reliable information and analysis of signs and parameters impacting energy consumption are available, designers and architects can evaluate and passively design a building with higher precision and an accurate picture of its energy consumption in the early stages of the design process. This article compares the location of Baku’s building mass to six climate-related scenarios. Three methodologies are used to determine how much solar energy the models utilize and the difference between annual heating and cooling energy consumption. The structure’s rotation has little effect on the energy utilized in most forms. Only east-west linear designs employ 6 to 4 kWh/m 2 of area and are common. Most important is the building’s increased energy consumption, which can take several forms. The building’s westward rotation may be its most important feature. Any westward revolution requires more energy. Building collections together offers many benefits, including the attention designers and investors provide to all places. Having an integrated collection and a sense of community affects inhabitants’ later connections. Dictionary and encyclopedia entries include typology discoveries. These findings will inform future research and investigations. An architect must know a variety of qualities and organizations to define and segregate the environment because architecture relies heavily on the environment. This research involves analyzing the current situation to gain knowledge for future estimations. The present will determine the future.

Suggested Citation

  • Ngakan Ketut Acwin Dwijendra & Untung Rahardja & Narukullapati Bharath Kumar & Indrajit Patra & Musaddak Maher Abdul Zahra & Yulia Finogenova & John William Grimaldo Guerrero & Samar Emad Izzat & Taif, 2022. "An Analysis of Urban Block Initiatives Influencing Energy Consumption and Solar Energy Absorption," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14273-:d:960175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ozoegwu, Chigbogu G. & Akpan, Patrick U., 2021. "A review and appraisal of Nigeria's solar energy policy objectives and strategies against the backdrop of the renewable energy policy of the Economic Community of West African States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Nuria Novas & Rosa María Garcia & Jose Manuel Camacho & Alfredo Alcayde, 2021. "Advances in Solar Energy towards Efficient and Sustainable Energy," Sustainability, MDPI, vol. 13(11), pages 1-31, June.
    3. Shi, Zhongming & Fonseca, Jimeno A. & Schlueter, Arno, 2021. "A parametric method using vernacular urban block typologies for investigating interactions between solar energy use and urban design," Renewable Energy, Elsevier, vol. 165(P1), pages 823-841.
    4. Aditya Pandey & Pramod Pandey & Jaya Shankar Tumuluru, 2022. "Solar Energy Production in India and Commonly Used Technologies—An Overview," Energies, MDPI, vol. 15(2), pages 1-26, January.
    5. Heng, Yan & Lu, Chao-Lin & Yu, Luqing & Gao, Zhifeng, 2020. "The heterogeneous preferences for solar energy policies among US households," Energy Policy, Elsevier, vol. 137(C).
    6. Serena Y. Kim & Koushik Ganesan & Princess Dickens & Soumya Panda, 2021. "Public Sentiment toward Solar Energy—Opinion Mining of Twitter Using a Transformer-Based Language Model," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    7. Thi Thu Em Vo & Hyeyoung Ko & Jun-Ho Huh & Namje Park, 2021. "Overview of Solar Energy for Aquaculture: The Potential and Future Trends," Energies, MDPI, vol. 14(21), pages 1-20, October.
    8. Mayis G. Gulaliyev & Elchin R. Mustafayev & Gulsura Y. Mehdiyeva, 2020. "Assessment of Solar Energy Potential and Its Ecological-Economic Efficiency: Azerbaijan Case," Sustainability, MDPI, vol. 12(3), pages 1-11, February.
    9. Luisa Pani & Lorena Francesconi & James Rombi & Fausto Mistretta & Mauro Sassu & Flavio Stochino, 2020. "Effect of Parent Concrete on the Performance of Recycled Aggregate Concrete," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    10. Amir Molajou & Parsa Pouladi & Abbas Afshar, 2021. "Incorporating Social System into Water-Food-Energy Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4561-4580, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojciech Bonenberg & Wojciech Skórzewski & Ling Qi & Yuhong Han & Wojciech Czekała & Mo Zhou, 2023. "An Energy-Saving-Oriented Approach to Urban Design—Application in the Local Conditions of Poznań Metropolitan Area (Poland)," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    2. Junle Yan & Hui Zhang & Xiaoxin Liu & Ling Ning & Wong Nyuk Hien, 2023. "The Impact of Residential Cluster Layout on Building Energy Consumption and Carbon Emissions in Regions with Hot Summers and Cold Winters in China," Sustainability, MDPI, vol. 15(15), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    3. Abajian, Alexander & Pretnar, Nick, 2021. "An Aggregate Perspective on the Geo-spatial Distribution of Residential Solar Panels," MPRA Paper 105481, University Library of Munich, Germany.
    4. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Sun, Cheng & Chwieduk, Dorota & Kalogirou, Soteris A., 2021. "Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid," Renewable Energy, Elsevier, vol. 180(C), pages 30-39.
    5. Ashraf Farahat & Abdulhaleem H. Labban & Abdul-Wahab S. Mashat & Hosny M. Hasanean & Harry D. Kambezidis, 2024. "Status of Solar-Energy Adoption in GCC, Yemen, Iraq, and Jordan: Challenges and Carbon-Footprint Analysis," Clean Technol., MDPI, vol. 6(2), pages 1-32, June.
    6. Yelin Dai & Yue Liu & Xuhui Ding & Chundu Wu & Yu Chen, 2022. "Environmental Regulation Promotes Eco-Efficiency through Industrial Transfer: Evidence from the Yangtze River Economic Belt in China," IJERPH, MDPI, vol. 19(16), pages 1-31, August.
    7. Anna M. Grabiec & Jeonghyun Kim & Andrzej Ubysz & Pilar Bilbao, 2021. "Some Remarks towards a Better Understanding of the Use of Concrete Recycled Aggregate: A Review," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    8. Tomasz Jałowiec & Henryk Wojtaszek & Ireneusz Miciuła, 2021. "Green Energy Management through the Implementation of RES in the EU. Analysis of the Opinions of Poland and Germany," Energies, MDPI, vol. 14(23), pages 1-33, December.
    9. Oriza Candra & Narukullapati Bharath Kumar & Ngakan Ketut Acwin Dwijendra & Indrajit Patra & Ali Majdi & Untung Rahardja & Mikhail Kosov & John William Grimaldo Guerrero & Ramaswamy Sivaraman, 2022. "Energy Simulation and Parametric Analysis of Water Cooled Thermal Photovoltaic Systems: Energy and Exergy Analysis of Photovoltaic Systems," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    10. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    11. Meshari Alsharari & Ammar Armghan & Khaled Aliqab, 2023. "Numerical Analysis and Parametric Optimization of T-Shaped Symmetrical Metasurface with Broad Bandwidth for Solar Absorber Application Based on Graphene Material," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    12. Hengtian Wang & Xiaolong Yang & Xinxin Xu & Liu Fei, 2021. "Exploring Opportunities and Challenges of Solar PV Power under Carbon Peak Scenario in China: A PEST Analysis," Energies, MDPI, vol. 14(11), pages 1-28, May.
    13. Ginevra Balletto & Mara Ladu & Federico Camerin & Emilio Ghiani & Jacopo Torriti, 2022. "More Circular City in the Energy and Ecological Transition: A Methodological Approach to Sustainable Urban Regeneration," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    14. Tena Bujas & Marija Koričan & Manuela Vukić & Vladimir Soldo & Nikola Vladimir & Ailong Fan, 2022. "Review of Energy Consumption by the Fish Farming and Processing Industry in Croatia and the Potential for Zero-Emissions Aquaculture," Energies, MDPI, vol. 15(21), pages 1-26, November.
    15. Sandro Sacchelli & Valerii Havrysh & Antonina Kalinichenko & Dariusz Suszanowicz, 2022. "Ground-Mounted Photovoltaic and Crop Cultivation: A Comparative Analysis," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    16. Kamali Saraji, Mahyar & Aliasgari, Elahe & Streimikiene, Dalia, 2023. "Assessment of the challenges to renewable energy technologies adoption in rural areas: A Fermatean CRITIC-VIKOR approach," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    17. Francisco Portillo & Rosa María García & Alfredo Alcayde & José Antonio Gázquez & Manuel Fernández-Ros & Nuria Novas, 2021. "Prospective Environmental and Economic Assessment of a Sensor Network," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    18. Mohammed H. Alshareef & Ayman F. Alghanmi, 2024. "Optimizing Maritime Energy Efficiency: A Machine Learning Approach Using Deep Reinforcement Learning for EEXI and CII Compliance," Sustainability, MDPI, vol. 16(23), pages 1-28, November.
    19. Oriza Candra & Abdeljelil Chammam & José Ricardo Nuñez Alvarez & Iskandar Muda & Hikmet Ş. Aybar, 2023. "The Impact of Renewable Energy Sources on the Sustainable Development of the Economy and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 15(3), pages 1-11, January.
    20. Tadeusz Olejarz & Dominika Siwiec & Andrzej Pacana, 2022. "Method of Qualitative–Environmental Choice of Devices Converting Green Energy," Energies, MDPI, vol. 15(23), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14273-:d:960175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.