IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p1689-d148430.html
   My bibliography  Save this article

Optimizing Regional Food and Energy Production under Limited Water Availability through Integrated Modeling

Author

Listed:
  • Junlian Gao

    (School of Management, China University of Mining and Technology (Beijing), Beijing 100083, China
    Center for Resources and Environmental Policy Research, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Xiangyang Xu

    (School of Management, China University of Mining and Technology (Beijing), Beijing 100083, China
    Center for Resources and Environmental Policy Research, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Guiying Cao

    (International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria)

  • Yurii M. Ermoliev

    (International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria)

  • Tatiana Y. Ermolieva

    (International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria)

  • Elena A. Rovenskaya

    (International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria
    Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Leninskie Gory, 1(52), GSP-1, Moscow 119991, Russia)

Abstract

Across the world, human activity is approaching planetary boundaries. In northwest China, in particular, the coal industry and agriculture are competing for key limited inputs of land and water. In this situation, the traditional approach to planning the development of each sector independently fails to deliver sustainable solutions, as solutions made in sectorial ‘silos’ are often suboptimal for the entire economy. We propose a spatially detailed cost-minimizing model for coal and agricultural production in a region under constraints on land and water availability. We apply the model to the case study of Shanxi province, China. We show how such an integrated optimization, which takes maximum advantage of the spatial heterogeneity in resource abundance, could help resolve the conflicts around the water–food–energy (WFE) nexus and assist in its management. We quantify the production-possibility frontiers under different water-availability scenarios and demonstrate that in water-scarce regions, like Shanxi, the production capacity and corresponding production solutions are highly sensitive to water constraints. The shadow prices estimated in the model could be the basis for intelligent differentiated water pricing, not only to enable the water-resource transfer between agriculture and the coal industry, and across regions, but also to achieve cost-effective WFE management.

Suggested Citation

  • Junlian Gao & Xiangyang Xu & Guiying Cao & Yurii M. Ermoliev & Tatiana Y. Ermolieva & Elena A. Rovenskaya, 2018. "Optimizing Regional Food and Energy Production under Limited Water Availability through Integrated Modeling," Sustainability, MDPI, vol. 10(6), pages 1-12, May.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1689-:d:148430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/1689/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/1689/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan Chang & Guijun Li & Yuan Yao & Lixiao Zhang & Chang Yu, 2016. "Quantifying the Water-Energy-Food Nexus: Current Status and Trends," Energies, MDPI, vol. 9(2), pages 1-17, January.
    2. Larry Dale & Nihan Karali & Dev Millstein & Mike Carnall & Sebastian Vicuña & Nicolas Borchers & Eduardo Bustos & Joe O’Hagan & David Purkey & Charles Heaps & Jack Sieber & William Collins & Michael S, 2015. "An integrated assessment of water-energy and climate change in sacramento, california: how strong is the nexus?," Climatic Change, Springer, vol. 132(2), pages 223-235, September.
    3. Mark Howells & Sebastian Hermann & Manuel Welsch & Morgan Bazilian & Rebecka Segerström & Thomas Alfstad & Dolf Gielen & Holger Rogner & Guenther Fischer & Harrij van Velthuizen & David Wiberg & Charl, 2013. "Integrated analysis of climate change, land-use, energy and water strategies," Nature Climate Change, Nature, vol. 3(7), pages 621-626, July.
    4. Zhang, Xiaohan & Winchester, Niven & Zhang, Xiliang, 2017. "The future of coal in China," Energy Policy, Elsevier, vol. 110(C), pages 644-652.
    5. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    6. Huang, Weilong & Ma, Ding & Chen, Wenying, 2017. "Connecting water and energy: Assessing the impacts of carbon and water constraints on China’s power sector," Applied Energy, Elsevier, vol. 185(P2), pages 1497-1505.
    7. Kurian, Mathew, 2017. "The water-energy-food nexus," Environmental Science & Policy, Elsevier, vol. 68(C), pages 97-106.
    8. Wichelns, Dennis, 2017. "The water-energy-food nexus: Is the increasing attention warranted, from either a research or policy perspective?," Environmental Science & Policy, Elsevier, vol. 69(C), pages 113-123.
    9. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2010. "Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate," Renewable Energy, Elsevier, vol. 35(1), pages 14-22.
    10. Pan, Lingying & Liu, Pei & Ma, Linwei & Li, Zheng, 2012. "A supply chain based assessment of water issues in the coal industry in China," Energy Policy, Elsevier, vol. 48(C), pages 93-102.
    11. Kaddoura, Saeed & El Khatib, Sameh, 2017. "Review of water-energy-food Nexus tools to improve the Nexus modelling approach for integrated policy making," Environmental Science & Policy, Elsevier, vol. 77(C), pages 114-121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tatiana Ermolieva & Petr Havlik & Yuri Ermoliev & Nikolay Khabarov & Michael Obersteiner, 2021. "Robust Management of Systemic Risks and Food-Water-Energy-Environmental Security: Two-Stage Strategic-Adaptive GLOBIOM Model," Sustainability, MDPI, vol. 13(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cássia Juliana Fernandes Torres & Camilla Hellen Peixoto de Lima & Bárbara Suzart de Almeida Goodwin & Terencio Rebello de Aguiar Junior & Andrea Sousa Fontes & Daniel Veras Ribeiro & Rodrigo Saldanha, 2019. "A Literature Review to Propose a Systematic Procedure to Develop “Nexus Thinking” Considering the Water–Energy–Food Nexus," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    2. Zhang, Tong & Tan, Qian & Yu, Xiaoning & Zhang, Shan, 2020. "Synergy assessment and optimization for water-energy-food nexus: Modeling and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    4. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Yaya Feng & Fanglei Zhong & Chunlin Huang & Juan Gu & Yingchun Ge & Xiaoyu Song, 2020. "Spatiotemporal Distribution and the Driving Force of the Food-Energy-Water Nexus Index in Zhangye, Northwest China," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    6. Hubert Hirwa & Qiuying Zhang & Yunfeng Qiao & Yu Peng & Peifang Leng & Chao Tian & Sayidjakhon Khasanov & Fadong Li & Alphonse Kayiranga & Fabien Muhirwa & Auguste Cesar Itangishaka & Gabriel Habiyare, 2021. "Insights on Water and Climate Change in the Greater Horn of Africa: Connecting Virtual Water and Water-Energy-Food-Biodiversity-Health Nexus," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    7. Adenike K. Opejin & Rimjhim M. Aggarwal & Dave D. White & J. Leah Jones & Ross Maciejewski & Giuseppe Mascaro & Hessam S. Sarjoughian, 2020. "A Bibliometric Analysis of Food-Energy-Water Nexus Literature," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    8. Srigiri, Srinivasa Reddy & Dombrowsky, Ines, 2021. "Governance of the water-energy-food nexus for an integrated implementation of the 2030 Agenda: Conceptual and methodological framework for analysis," IDOS Discussion Papers 2/2021, German Institute of Development and Sustainability (IDOS).
    9. Lazaro, Lira Luz Benites & Giatti, Leandro Luiz & Bermann, Celio & Giarolla, Angelica & Ometto, Jean, 2021. "Policy and governance dynamics in the water-energy-food-land nexus of biofuels: Proposing a qualitative analysis model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    11. Diermeier, Matthias & Schmidt, Torsten, 2014. "Oil price effects on land use competition: an empirical analysis," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 15(1), pages 1-17.
    12. Martinez-Hernandez, Elias & Leach, Matthew & Yang, Aidong, 2017. "Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym," Applied Energy, Elsevier, vol. 206(C), pages 1009-1021.
    13. Märker, Carolin & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "Integrated governance for the food–energy–water nexus – The scope of action for institutional change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 290-300.
    14. Isabella Georgiou & Serena Caucci & Jonathan Clive Morris & Edeltraud Guenther & Peter Krebs, 2023. "Assessing the Potential of Water Reuse Uptake Through a Private–Public Partnership: a Practitioner’s Perspective," Circular Economy and Sustainability, Springer, vol. 3(1), pages 199-220, March.
    15. Zhang, Jianjun & Chen, Yang & Rao, Yongheng & Fu, Meichen & Prishchepov, Alexander V., 2017. "Alternative spatial allocation of suitable land for biofuel production in China," Energy Policy, Elsevier, vol. 110(C), pages 631-643.
    16. Zeyang Bian & Dan Liu, 2021. "A Comprehensive Review on Types, Methods and Different Regions Related to Water–Energy–Food Nexus," IJERPH, MDPI, vol. 18(16), pages 1-24, August.
    17. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    18. Fan, Xing & Zhang, Wen & Chen, Weiwei & Chen, Bin, 2020. "Land–water–energy nexus in agricultural management for greenhouse gas mitigation," Applied Energy, Elsevier, vol. 265(C).
    19. Hongfang Li & Huixiao Wang & Yaxue Yang & Ruxin Zhao, 2021. "Regional Coordination and Security of Water–Energy–Food Symbiosis in Northeastern China," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    20. Sooyeon Yi & G. Mathias Kondolf & Samuel Sandoval-Solis & Larry Dale, 2022. "Application of Machine Learning-based Energy Use Forecasting for Inter-basin Water Transfer Project," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5675-5694, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1689-:d:148430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.