IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i11d10.1007_s11269-021-02910-7.html
   My bibliography  Save this article

Using the Fuzzy Clustering and Principle Component Analysis for Assessing the Impact of Potential Evapotranspiration Calculation Method On the Modified RDI Index

Author

Listed:
  • Abdol Rassoul Zarei

    (Fasa University)

  • Mohammad Reza Mahmoudi

    (Fasa University)

  • Ali Shabani

    (Fasa University)

Abstract

The modified reconnaissance drought index (RDIe) which is a modified version of RDI is presented for assessing drought conditions with an emphasis on agricultural drought. The potential evapotranspiration (PET) and effective rainfall are required climatic variables to calculate RDIe. Although the FAO Penman–Monteith (FPM) equation is the reference method for determining the PET, due to the need for data of a large number of climatic variables it is difficult to use in areas with shortage climatic data. Therefore, in this research, using the fuzzy clustering (FC) and principle component analysis (PCA) methods, the influence of PET calculation methods including FPM (used as reference method), FAO Penman (FP), Hargreaves-Samani (HS), Blaney-Criddle (BC), Turc (Tu), Jensen-Haise (JH), Priestley–Taylor (PT) and FAO24 Radiation (Ra) methods on the RDIe (in 1, 3 and 12-month time scales) was assessed. In this study the climatic data series of 5 stations in Fars province, Iran from 1989 to 2018 was used. Based on the results of PCA model, in short-term time scales (1 and 3-month), the calculated RDIe values based on the HS method (at 100% of stations) and in long-term time scale (annual) based on the FP method (at 60% of stations) had the highest correlation with RDIe based on the FPM method. According to the results of FC method, in 1-month time scale, the values of RDIe using PT and HS methods (at 100% and 80% of selected stations, respectively), in 3-month time scale, the values of RDIe using PT, HS and Ra methods (at 100% of stations) and in annual time scale, the values of RDIe using FP method (at 60% of stations) had the highest similarities with the values of RDIe using FPM. Therefore, it is recommended to replace the FPM method with HS (in 1 and 3-month time scales) and FP (in 12-month time scales) methods in areas with minimum available meteorological data.

Suggested Citation

  • Abdol Rassoul Zarei & Mohammad Reza Mahmoudi & Ali Shabani, 2021. "Using the Fuzzy Clustering and Principle Component Analysis for Assessing the Impact of Potential Evapotranspiration Calculation Method On the Modified RDI Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3679-3702, September.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:11:d:10.1007_s11269-021-02910-7
    DOI: 10.1007/s11269-021-02910-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02910-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02910-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davar Khalili & Tohid Farnoud & Hamed Jamshidi & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2011. "Comparability Analyses of the SPI and RDI Meteorological Drought Indices in Different Climatic Zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1737-1757, April.
    2. Shirmohammadi-Aliakbarkhani, Zahra & Saberali, Seyed Farhad, 2020. "Evaluating of eight evapotranspiration estimation methods in arid regions of Iran," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Neda Khanmohammadi & Hossein Rezaie & Majid Montaseri & Javad Behmanesh, 2017. "The Effect of Temperature Adjustment on Reference Evapotranspiration and Reconnaissance Drought Index (RDI) in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 5001-5017, December.
    4. Hamid Jamalinia & Saber Khalouei & Vahideh Rezaie & Samad Nejatian & Karamolah Bagheri-Fard & Hamid Parvin, 2018. "Diverse classifier ensemble creation based on heuristic dataset modification," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(7), pages 1209-1226, May.
    5. Abdol Rassoul Zarei & Mohammad Reza Mahmoudi, 2017. "Evaluation of changes in RDIst index effected by different Potential Evapotranspiration calculation methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4981-4999, December.
    6. Quang-Tuong Vo & Jae-Min So & Deg-Hyo Bae, 2020. "An Integrated Framework for Extreme Drought Assessments Using the Natural Drought Index, Copula and Gi* Statistic," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1353-1368, March.
    7. Seyed Banimahd & Davar Khalili, 2013. "Factors Influencing Markov Chains Predictability Characteristics, Utilizing SPI, RDI, EDI and SPEI Drought Indices in Different Climatic Zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 3911-3928, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dilip Kumar Roy & Kowshik Kumar Saha & Mohammad Kamruzzaman & Sujit Kumar Biswas & Mohammad Anower Hossain, 2021. "Hierarchical Fuzzy Systems Integrated with Particle Swarm Optimization for Daily Reference Evapotranspiration Prediction: a Novel Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5383-5407, December.
    2. Mohammad Amin Asadi Zarch, 2022. "Past and Future Global Drought Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5259-5276, October.
    3. Jin Hyuck Kim & Jang Hyun Sung & Shamsuddin Shahid & Eun-Sung Chung, 2022. "Future Hydrological Drought Analysis Considering Agricultural Water Withdrawal Under SSP Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 2913-2930, July.
    4. Mohammad Reza Mahmoudi & Abdol Rassoul Zarei, 2022. "Using Periodic Copula to Assess the Relationship Between Two Meteorological Cyclostationary Time Series Datasets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4363-4388, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Tabari & Reza Zamani & Hossein Rahmati & Patrick Willems, 2015. "Markov Chains of Different Orders for Streamflow Drought Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3441-3457, July.
    2. Milan Gocic & Slavisa Trajkovic, 2014. "Drought Characterisation Based on Water Surplus Variability Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3179-3191, August.
    3. Arash Modaresi Rad & Davar Khalili & Ali Akbar Kamgar-Haghighi & Shahrokh Zand-Parsa & Seyed Adib Banimahd, 2016. "Assessment of seasonal characteristics of streamflow droughts under semiarid conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1541-1564, July.
    4. Muhammad Imran Khan & Dong Liu & Qiang Fu & Qaisar Saddique & Muhammad Abrar Faiz & Tianxiao Li & Muhammad Uzair Qamar & Song Cui & Chen Cheng, 2017. "Projected Changes of Future Extreme Drought Events under Numerous Drought Indices in the Heilongjiang Province of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3921-3937, September.
    5. Arash Modaresi Rad & Davar Khalili, 2015. "Appropriateness of Clustered Raingauge Stations for Spatio-Temporal Meteorological Drought Applications," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4157-4171, September.
    6. Abolfazl Mosaedi & Hamid Zare Abyaneh & Mohammad Ghabaei Sough & S. Samadi, 2015. "Quantifying Changes in Reconnaissance Drought Index using Equiprobability Transformation Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2451-2469, June.
    7. Javad Bazrafshan & Somayeh Hejabi, 2018. "A Non-Stationary Reconnaissance Drought Index (NRDI) for Drought Monitoring in a Changing Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2611-2624, June.
    8. Alex Avilés & Rolando Célleri & Javier Paredes & Abel Solera, 2015. "Evaluation of Markov Chain Based Drought Forecasts in an Andean Regulated River Basin Using the Skill Scores RPS and GMSS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1949-1963, April.
    9. Abdelaaziz Merabti & Mohamed Meddi & Diogo S. Martins & Luis S. Pereira, 2018. "Comparing SPI and RDI Applied at Local Scale as Influenced by Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1071-1085, February.
    10. Muhammad Waseem & Muhammad Ajmal & Joo Heon Lee & Tae-Woong Kim, 2016. "Multivariate Drought Assessment Considering the Antecedent Drought Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4221-4231, September.
    11. Mohammed Magdy Hamed & Najeebullah Khan & Mohd Khairul Idlan Muhammad & Shamsuddin Shahid, 2022. "Ranking of Empirical Evapotranspiration Models in Different Climate Zones of Pakistan," Land, MDPI, vol. 11(12), pages 1-18, November.
    12. Mohammad Amin Asadi Zarch, 2022. "Past and Future Global Drought Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5259-5276, October.
    13. Ruperto Ortiz-Gómez & Roberto S. Flowers-Cano & Guillermo Medina-García, 2022. "Sensitivity of the RDI and SPEI Drought Indices to Different Models for Estimating Evapotranspiration Potential in Semiarid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2471-2492, May.
    14. Mahmoudi, Mohammad Reza, 2021. "A computational technique to classify several fractional Brownian motion processes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    15. Zablon W. Shilenje & Victor Ongoma & Mercy Njagi, 2019. "Applicability of Combined Drought Index in drought analysis over North Eastern Kenya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 379-389, October.
    16. Muhammad Imran Khan & Dong Liu & Qiang Fu & Shuhua Dong & Umar Waqas Liaqat & Muhammad Abrar Faiz & Yuxiang Hu & Qaisar Saddique, 2016. "Recent Climate Trends and Drought Behavioral Assessment Based on Precipitation and Temperature Data Series in the Songhua River Basin of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4839-4859, October.
    17. Zahra Fahimirad & Nazanin Shahkarami, 2021. "The Impact of Climate Change on Hydro-Meteorological Droughts Using Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3969-3993, September.
    18. Nadjib Haied & Atif Foufou & Samira Khadri & Adel Boussaid & Mohamed Azlaoui & Nabil Bougherira, 2023. "Spatial and Temporal Assessment of Drought Hazard, Vulnerability and Risk in Three Different Climatic Zones in Algeria Using Two Commonly Used Meteorological Indices," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    19. Khanmohammadi, Neda & Rezaie, Hossein & Montaseri, Majid & Behmanesh, Javad, 2017. "The effect of reference-condition-based temperature modification on the trend of reference evapotranspiration in arid and semi-arid regions," Agricultural Water Management, Elsevier, vol. 194(C), pages 204-213.
    20. Alireza Shokoohi & Reza Morovati, 2015. "Basinwide Comparison of RDI and SPI Within an IWRM Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2011-2026, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:11:d:10.1007_s11269-021-02910-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.