IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i3d10.1007_s11269-017-1855-7.html
   My bibliography  Save this article

Comparing SPI and RDI Applied at Local Scale as Influenced by Climate

Author

Listed:
  • Abdelaaziz Merabti

    (Ecole Nationale Supérieure d’Hydraulique de Blida, Laboratoire GEE)

  • Mohamed Meddi

    (Ecole Nationale Supérieure d’Hydraulique de Blida, Laboratoire GEE)

  • Diogo S. Martins

    (Universidade de Lisboa)

  • Luis S. Pereira

    (LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa)

Abstract

Drought and wetness events were studied in the Northeast Algeria with SPI and RDI. The study area includes a variety of climatic conditions, ranging from humid in the North, close to the Mediterranean Sea, to arid in the South, near the Sahara Desert. SPI only uses precipitation data while RDI uses a ratio between precipitation and potential evapotranspiration (PET). The latter was computed with the Thornthwaite equation, thus using temperature data only. Monthly precipitation data were obtained from 123 rainfall stations and monthly temperature data were obtained from CFSR reanalysis gridded temperature data. Both data sets cover the period 1979–80 to 2013–14. Using ordinary kriging, the gridded temperature data was interpolated to all the locations having precipitation data, thus providing to compute SPI and RDI with the same observed rainfall data for the 3-, 6- and 12-month time scales. SPI and RDI were therefore compared at station level and results and have shown that both indices revealed more sensitive to drought when applied in the semi-arid and arid zones. Differently, more wetness events were detected by RDI in the more humid locations. Comparing both indices, they show a coherent and similar behavior, however RDI shows smaller differences among climate zones and time-scales, which is an advantage relative to the SPI and is likely due to including PET in RDI.

Suggested Citation

  • Abdelaaziz Merabti & Mohamed Meddi & Diogo S. Martins & Luis S. Pereira, 2018. "Comparing SPI and RDI Applied at Local Scale as Influenced by Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1071-1085, February.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:3:d:10.1007_s11269-017-1855-7
    DOI: 10.1007/s11269-017-1855-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1855-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1855-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed Meddi & Ali Assani & Hind Meddi, 2010. "Temporal Variability of Annual Rainfall in the Macta and Tafna Catchments, Northwestern Algeria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3817-3833, November.
    2. Ana Paulo & Luis Pereira, 2007. "Prediction of SPI Drought Class Transitions Using Markov Chains," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(10), pages 1813-1827, October.
    3. George Tsakiris, 2017. "Drought Risk Assessment and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3083-3095, August.
    4. Harris Vangelis & Mike Spiliotis & George Tsakiris, 2011. "Drought Severity Assessment Based on Bivariate Probability Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 357-371, January.
    5. U. Surendran & V. Kumar & S. Ramasubramoniam & P. Raja, 2017. "Development of Drought Indices for Semi-Arid Region Using Drought Indices Calculator (DrinC) – A Case Study from Madurai District, a Semi-Arid Region in India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3593-3605, September.
    6. Saadi, Sameh & Todorovic, Mladen & Tanasijevic, Lazar & Pereira, Luis S. & Pizzigalli, Claudia & Lionello, Piero, 2015. "Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield," Agricultural Water Management, Elsevier, vol. 147(C), pages 103-115.
    7. Ana Paulo & Diogo Martins & Luís Santos Pereira, 2016. "Influence of Precipitation Changes on the SPI and Related Drought Severity. An Analysis Using Long-Term Data Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5737-5757, December.
    8. Ruqayah Mohammed & Miklas Scholz, 2017. "Impact of Evapotranspiration Formulations at Various Elevations on the Reconnaissance Drought Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 531-548, January.
    9. Seyed Banimahd & Davar Khalili, 2013. "Factors Influencing Markov Chains Predictability Characteristics, Utilizing SPI, RDI, EDI and SPEI Drought Indices in Different Climatic Zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 3911-3928, September.
    10. Davar Khalili & Tohid Farnoud & Hamed Jamshidi & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2011. "Comparability Analyses of the SPI and RDI Meteorological Drought Indices in Different Climatic Zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1737-1757, April.
    11. Mohammad Asadi Zarch & Hossein Malekinezhad & Mohammad Mobin & Mohammad Dastorani & Mohammad Kousari, 2011. "Drought Monitoring by Reconnaissance Drought Index (RDI) in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3485-3504, October.
    12. Abdol Rassoul Zarei & Mohammad Mehdi Moghimi & Mohammad Reza Mahmoudi, 2016. "Analysis of Changes in Spatial Pattern of Drought Using RDI Index in south of Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3723-3743, September.
    13. Abolfazl Mosaedi & Hamid Zare Abyaneh & Mohammad Ghabaei Sough & S. Samadi, 2015. "Quantifying Changes in Reconnaissance Drought Index using Equiprobability Transformation Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2451-2469, June.
    14. G. Tsakiris & D. Pangalou & H. Vangelis, 2007. "Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 821-833, May.
    15. Leila Hamlaoui-Moulai & Mohammed Mesbah & Doudja Souag-Gamane & Abderrahmane Medjerab, 2013. "Detecting hydro-climatic change using spatiotemporal analysis of rainfall time series in Western Algeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1293-1311, February.
    16. George Tsakiris & Nikos Kordalis & Dimitris Tigkas & Vasileios Tsakiris & Harris Vangelis, 2016. "Analysing Drought Severity and Areal Extent by 2D Archimedean Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5723-5735, December.
    17. Alireza Shokoohi & Reza Morovati, 2015. "Basinwide Comparison of RDI and SPI Within an IWRM Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2011-2026, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitris Tigkas & Harris Vangelis & George Tsakiris, 2020. "Implementing Crop Evapotranspiration in RDI for Farm-Level Drought Evaluation and Adaptation under Climate Change Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(14), pages 4329-4343, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Imran Khan & Dong Liu & Qiang Fu & Qaisar Saddique & Muhammad Abrar Faiz & Tianxiao Li & Muhammad Uzair Qamar & Song Cui & Chen Cheng, 2017. "Projected Changes of Future Extreme Drought Events under Numerous Drought Indices in the Heilongjiang Province of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3921-3937, September.
    2. Abolfazl Mosaedi & Hamid Zare Abyaneh & Mohammad Ghabaei Sough & S. Samadi, 2015. "Quantifying Changes in Reconnaissance Drought Index using Equiprobability Transformation Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2451-2469, June.
    3. Abdelaaziz Merabti & Diogo S. Martins & Mohamed Meddi & Luis S. Pereira, 2018. "Spatial and Time Variability of Drought Based on SPI and RDI with Various Time Scales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1087-1100, February.
    4. Javad Bazrafshan & Somayeh Hejabi, 2018. "A Non-Stationary Reconnaissance Drought Index (NRDI) for Drought Monitoring in a Changing Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2611-2624, June.
    5. Javad Bazrafshan, 2017. "Effect of Air Temperature on Historical Trend of Long-Term Droughts in Different Climates of Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4683-4698, November.
    6. Dimitris Tigkas & Harris Vangelis & George Tsakiris, 2020. "Implementing Crop Evapotranspiration in RDI for Farm-Level Drought Evaluation and Adaptation under Climate Change Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(14), pages 4329-4343, November.
    7. Mohammad Amin Asadi Zarch, 2022. "Past and Future Global Drought Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5259-5276, October.
    8. George Tsakiris & Nikos Kordalis & Dimitris Tigkas & Vasileios Tsakiris & Harris Vangelis, 2016. "Analysing Drought Severity and Areal Extent by 2D Archimedean Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5723-5735, December.
    9. Milan Gocic & Slavisa Trajkovic, 2014. "Drought Characterisation Based on Water Surplus Variability Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3179-3191, August.
    10. Alireza Shokoohi & Reza Morovati, 2015. "Basinwide Comparison of RDI and SPI Within an IWRM Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2011-2026, April.
    11. Panagiotis Angelidis & Fotios Maris & Nikos Kotsovinos & Vlassios Hrissanthou, 2012. "Computation of Drought Index SPI with Alternative Distribution Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2453-2473, July.
    12. Neda Khanmohammadi & Hossein Rezaie & Javad Behmanesh, 2022. "Investigation of Drought Trend on the Basis of the Best Obtained Drought Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1355-1375, March.
    13. Seyed Banimahd & Davar Khalili, 2013. "Factors Influencing Markov Chains Predictability Characteristics, Utilizing SPI, RDI, EDI and SPEI Drought Indices in Different Climatic Zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 3911-3928, September.
    14. Poulomi Ganguli & M. Reddy, 2012. "Risk Assessment of Droughts in Gujarat Using Bivariate Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3301-3327, September.
    15. Alex Avilés & Rolando Célleri & Javier Paredes & Abel Solera, 2015. "Evaluation of Markov Chain Based Drought Forecasts in an Andean Regulated River Basin Using the Skill Scores RPS and GMSS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1949-1963, April.
    16. Hossein Tabari & Reza Zamani & Hossein Rahmati & Patrick Willems, 2015. "Markov Chains of Different Orders for Streamflow Drought Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3441-3457, July.
    17. Arash Modaresi Rad & Davar Khalili & Ali Akbar Kamgar-Haghighi & Shahrokh Zand-Parsa & Seyed Adib Banimahd, 2016. "Assessment of seasonal characteristics of streamflow droughts under semiarid conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1541-1564, July.
    18. G. Tsakiris & I. Nalbantis & H. Vangelis & B. Verbeiren & M. Huysmans & B. Tychon & I. Jacquemin & F. Canters & S. Vanderhaegen & G. Engelen & L. Poelmans & P. Becker & O. Batelaan, 2013. "A System-based Paradigm of Drought Analysis for Operational Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5281-5297, December.
    19. Arash Modaresi Rad & Davar Khalili, 2015. "Appropriateness of Clustered Raingauge Stations for Spatio-Temporal Meteorological Drought Applications," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4157-4171, September.
    20. Mohammad Ghabaei Sough & Hamid Zare Abyaneh & Abolfazl Mosaedi, 2018. "Assessing a Multivariate Approach Based on Scalogram Analysis for Agricultural Drought Monitoring," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3423-3440, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:3:d:10.1007_s11269-017-1855-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.