IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i3p649-664.html
   My bibliography  Save this article

Predicting Drought Magnitudes: A Parsimonious Model for Canadian Hydrological Droughts

Author

Listed:
  • T. Sharma
  • U. Panu

Abstract

A multiplicative relationship, drought magnitude (M)=drought intensity (I) × drought duration or length (L) is used as a basis for predicting the largest expected value of hydrological drought magnitude, E(M T ) over a period of T-year (or month). The prediction of E(M T ) is carried out in terms of the SHI (standardized hydrological index, tantamount to standard normal variate) sequences of the annual and monthly streamflow time series. The probability distribution function (pdf) of I (drought intensity) was assumed to follow a truncated normal. The drought length (L c ) was taken as some characteristic duration of the drought period, which is expressible as a linear combination of the expected longest (extreme) duration, E(L T ) and the mean duration, L m of droughts and is estimated involving a parameter ø (range 0 to 1). The drought magnitude (deficit-sum, M) has been assumed to follow a gamma pdf, in view of the observed behavior of M. The model M=I × L has been invoked via two approximations, viz. Type-1 involves only mean of I and Type-2 involves both mean and variance of I through the theorem of extremes of random numbers of random variables. The E(L T ) were obtained using the Markov chain (MC) model of an appropriate order, which turned out to be zero order Markov chain (MC-0) at the annual time scale. At the monthly time scale, the E(L T ) was best represented by MC-0 for SHI sequences with low value of lag-1 autocorrelation (ρ > 0.3) and first order Markov chain (MC-1) for SHI sequences with ρ > 0.3. At low cutoff levels (q ≤ 0.2), the trivial relationship E(M T )=E(I) × E(L T ) i.e. without considerations of the extreme number theorem and the pdf of M yielded satisfactory results. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • T. Sharma & U. Panu, 2013. "Predicting Drought Magnitudes: A Parsimonious Model for Canadian Hydrological Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 649-664, February.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:3:p:649-664
    DOI: 10.1007/s11269-012-0207-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0207-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0207-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ana Paulo & Luis Pereira, 2007. "Prediction of SPI Drought Class Transitions Using Markov Chains," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(10), pages 1813-1827, October.
    2. Davar Khalili & Tohid Farnoud & Hamed Jamshidi & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2011. "Comparability Analyses of the SPI and RDI Meteorological Drought Indices in Different Climatic Zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1737-1757, April.
    3. T. Sharma, 1997. "Estimation of Drought Severity on Independent and Dependent Hydrologic Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 11(1), pages 35-49, February.
    4. I. Nalbantis & G. Tsakiris, 2009. "Assessment of Hydrological Drought Revisited," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 881-897, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Sharma & U. Panu, 2014. "A Simplified Model for Predicting Drought Magnitudes: a Case of Streamflow Droughts in Canadian Prairies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1597-1611, April.
    2. Alex Avilés & Rolando Célleri & Javier Paredes & Abel Solera, 2015. "Evaluation of Markov Chain Based Drought Forecasts in an Andean Regulated River Basin Using the Skill Scores RPS and GMSS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1949-1963, April.
    3. Majid Kazemzadeh & Arash Malekian, 2016. "Spatial characteristics and temporal trends of meteorological and hydrological droughts in northwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 191-210, January.
    4. Hossein Tabari & Reza Zamani & Hossein Rahmati & Patrick Willems, 2015. "Markov Chains of Different Orders for Streamflow Drought Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3441-3457, July.
    5. Javad Bazrafshan & Somayeh Hejabi & Jaber Rahimi, 2014. "Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1045-1060, March.
    6. Alireza Shokoohi & Reza Morovati, 2015. "Basinwide Comparison of RDI and SPI Within an IWRM Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2011-2026, April.
    7. Panagiotis Angelidis & Fotios Maris & Nikos Kotsovinos & Vlassios Hrissanthou, 2012. "Computation of Drought Index SPI with Alternative Distribution Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2453-2473, July.
    8. Chen-Feng Yeh & Jinge Wang & Hsin-Fu Yeh & Cheng-Haw Lee, 2015. "SDI and Markov Chains for Regional Drought Characteristics," Sustainability, MDPI, vol. 7(8), pages 1-20, August.
    9. Jianzhu Li & Shuhan Zhou & Rong Hu, 2016. "Hydrological Drought Class Transition Using SPI and SRI Time Series by Loglinear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 669-684, January.
    10. Nadia Shahraki & Safar Marofi & Sadegh Ghazanfari, 2019. "Modeling of Daily Rainfall Extremes, Using a Semi-Parametric Pareto Tail Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 493-508, January.
    11. Hsin-Fu Yeh & Hsin-Li Hsu, 2019. "Using the Markov Chain to Analyze Precipitation and Groundwater Drought Characteristics and Linkage with Atmospheric Circulation," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    12. Antonino Cancelliere, 2017. "Non Stationary Analysis of Extreme Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3097-3110, August.
    13. Anshuka Anshuka & Floris F. van Ogtrop & R. Willem Vervoort, 2019. "Drought forecasting through statistical models using standardised precipitation index: a systematic review and meta-regression analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 955-977, June.
    14. Zhiqiang Wang & Jingyi Jiang & Yongfeng Liao & Lan Deng, 2015. "Risk assessment of maize drought hazard in the middle region of farming-pastoral ecotone in Northern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1515-1534, April.
    15. Alex Avilés & Abel Solera Solera & Javier Paredes-Arquiola & María Pedro-Monzonís, 2018. "Integrated Methodological Framework for Assessing the Risk of Failure in Water Supply Incorporating Drought Forecasts. Case Study: Andean Regulated River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1209-1223, March.
    16. N. Subash & H. Mohan, 2011. "A Simple Rationally Integrated Drought Indicator for Rice–Wheat Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2425-2447, August.
    17. Jianzhu Li & Shuhan Zhou & Rong Hu, 2016. "Hydrological Drought Class Transition Using SPI and SRI Time Series by Loglinear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 669-684, January.
    18. Arash Modaresi Rad & Davar Khalili & Ali Akbar Kamgar-Haghighi & Shahrokh Zand-Parsa & Seyed Adib Banimahd, 2016. "Assessment of seasonal characteristics of streamflow droughts under semiarid conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1541-1564, July.
    19. Dimitrios Myronidis & Dimitrios Stathis & Konstantinos Ioannou & Dimitrios Fotakis, 2012. "An Integration of Statistics Temporal Methods to Track the Effect of Drought in a Shallow Mediterranean Lake," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4587-4605, December.
    20. Furat A. M. Al-Faraj & Dimitris Tigkas, 2016. "Impacts of Multi-year Droughts and Upstream Human-Induced Activities on the Development of a Semi-arid Transboundary Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5131-5143, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:3:p:649-664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.