IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i9d10.1007_s11269-022-03116-1.html
   My bibliography  Save this article

Future Hydrological Drought Analysis Considering Agricultural Water Withdrawal Under SSP Scenarios

Author

Listed:
  • Jin Hyuck Kim

    (Seoul National University of Science and Technology)

  • Jang Hyun Sung

    (Han River Flood Control Office, Seoul)

  • Shamsuddin Shahid

    (Universiti Teknologi Malaysia (UTM))

  • Eun-Sung Chung

    (Seoul National University of Science and Technology)

Abstract

Hydrological drought is assessed through river flow, which depends on river runoff and water withdrawal. This study proposed a framework to project future hydrological droughts considering agricultural water withdrawal (AWW) for shared socioeconomic pathway (SSP) scenarios. The relationship between AWW and potential evapotranspiration (PET) was determined using a deep belief network (DBN) model and then applied to estimate future AWW using projections of the twelve global climate models (GCMs). 12 GCMs were bias-corrected using the quantile mapping method, climate variables were generated, and river flow was estimated using the soil and water assessment tool (SWAT) model. The standardized runoff index (SRI) was used to project the changes in hydrological drought characteristics. The results revealed a higher occurrence of severe droughts in the future. Droughts would be more frequent in the near future (2021–2060) than in the far future (2061–2100) and more severe when AWW is considered. Droughts would also be more severe for SSP5-8.5 than for SSP2-4.5. The study revealed that the increased PET due to rising temperatures is the primary cause of the increased drought frequency and severity. The AWW will accelerate the drought severities in the future in the Yeongsan River basin.

Suggested Citation

  • Jin Hyuck Kim & Jang Hyun Sung & Shamsuddin Shahid & Eun-Sung Chung, 2022. "Future Hydrological Drought Analysis Considering Agricultural Water Withdrawal Under SSP Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 2913-2930, July.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:9:d:10.1007_s11269-022-03116-1
    DOI: 10.1007/s11269-022-03116-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03116-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03116-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naveed Ahmed & Genxu Wang & Martijn J. Booij & Sun Xiangyang & Fiaz Hussain & Ghulam Nabi, 2022. "Separation of the Impact of Landuse/Landcover Change and Climate Change on Runoff in the Upstream Area of the Yangtze River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 181-201, January.
    2. Abdol Rassoul Zarei & Mohammad Reza Mahmoudi & Ali Shabani, 2021. "Using the Fuzzy Clustering and Principle Component Analysis for Assessing the Impact of Potential Evapotranspiration Calculation Method On the Modified RDI Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3679-3702, September.
    3. He, Guohua & Geng, Chenfan & Zhai, Jiaqi & Zhao, Yong & Wang, Qingming & Jiang, Shan & Zhu, Yongnan & Wang, Lizhen, 2021. "Impact of food consumption patterns change on agricultural water requirements: An urban-rural comparison in China," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Jew Das & N. V. Umamahesh, 2018. "Assessment of uncertainty in estimating future flood return levels under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 109-124, August.
    5. Höllermann, Britta & Evers, Mariele, 2017. "Perception and handling of uncertainties in water management—A study of practitioners’ and scientists’ perspectives on uncertainty in their daily decision-making," Environmental Science & Policy, Elsevier, vol. 71(C), pages 9-18.
    6. Roja Najafi & Masoud Reza Hessami Kermani, 2017. "Uncertainty Modeling of Statistical Downscaling to Assess Climate Change Impacts on Temperature and Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1843-1858, April.
    7. Young Hoon Song & Eun-Sung Chung & Mohammed Sanusi Shiru, 2020. "Uncertainty Analysis of Monthly Precipitation in GCMs Using Multiple Bias Correction Methods under Different RCPs," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    8. Haibo Chu & Jiahua Wei & Yuan Jiang, 2021. "Middle- and Long-Term Streamflow Forecasting and Uncertainty Analysis Using Lasso-DBN-Bootstrap Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2617-2632, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yonca Cavus & Kerstin Stahl & Hafzullah Aksoy, 2022. "Revisiting Major Dry Periods by Rolling Time Series Analysis for Human-Water Relevance in Drought," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2725-2739, June.
    2. Soumyashree Dixit & V. Neethin & K. V. Jayakumar, 2023. "Assessment of Crop-Drought Relationship: A Climate Change Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 4075-4095, August.
    3. Mohammad Naser Sediqi & Daisuke Komori, 2023. "Assessing Water Resource Sustainability in the Kabul River Basin: A Standardized Runoff Index and Reliability, Resilience, and Vulnerability Framework Approach," Sustainability, MDPI, vol. 16(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jew Das & Alin Treesa & N. V. Umamahesh, 2018. "Modelling Impacts of Climate Change on a River Basin: Analysis of Uncertainty Using REA & Possibilistic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4833-4852, December.
    2. Muhammad Azmat & Muhammad Uzair Qamar & Shakil Ahmed & Muhammad Adnan Shahid & Ejaz Hussain & Sajjad Ahmad & Rao Arsalan Khushnood, 2018. "Ensembling Downscaling Techniques and Multiple GCMs to Improve Climate Change Predictions in Cryosphere Scarcely-Gauged Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3155-3174, July.
    3. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    4. Lili Wang & Yanlong Guo & Manhong Fan, 2022. "Improving Annual Streamflow Prediction by Extracting Information from High-frequency Components of Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4535-4555, September.
    5. Mudassar Iqbal & Jun Wen & Muhammad Masood & Muhammad Umer Masood & Muhammad Adnan, 2022. "Impacts of Climate and Land-Use Changes on Hydrological Processes of the Source Region of Yellow River, China," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    6. Liu, Gengyuan & Du, Shupan & Gao, Yuan & Xiong, Xiaoping & Lombardi, Ginevra Virginia & Meng, Fanxin & Chen, Yu & Chen, Caocao, 2024. "A study on energy-water-food-carbon nexus in typical Chinese northern rural households," Energy Policy, Elsevier, vol. 188(C).
    7. Siabi, E. K. & Phuong, D. N. D. & Kabobah, A. T. & Akpoti, Komlavi & Anornu, G. & Incoom, A. B. M. & Nyantakyi, E. K. & Yeboah, K. A. & Siabi, S. E. & Vuu, C. & Domfeh, M. K. & Mortey, E. M. & Wemegah, 2023. "Projections and impact assessment of the local climate change conditions of the Black Volta Basin of Ghana based on the Statistical DownScaling Model," Papers published in Journals (Open Access), International Water Management Institute, pages 14(2):494-5.
    8. Bao-Jian Li & Guo-Liang Sun & Yan Liu & Wen-Chuan Wang & Xu-Dong Huang, 2022. "Monthly Runoff Forecasting Using Variational Mode Decomposition Coupled with Gray Wolf Optimizer-Based Long Short-term Memory Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2095-2115, April.
    9. Yinmao Zhao & Zhansheng Li & Siyu Cai & Hao Wang, 2020. "Characteristics of extreme precipitation and runoff in the Xijiang River Basin at global warming of 1.5 °C and 2 °C," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 669-688, April.
    10. Jan Niel & E. Uytven & P. Willems, 2019. "Uncertainty Analysis of Climate Change Impact on River Flow Extremes Based on a Large Multi-Model Ensemble," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4319-4333, September.
    11. Jin Hyuck Kim & Jang Hyun Sung & Eun-Sung Chung & Sang Ug Kim & Minwoo Son & Mohammed Sanusi Shiru, 2021. "Comparison of Projection in Meteorological and Hydrological Droughts in the Cheongmicheon Watershed for RCP4.5 and SSP2-4.5," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    12. He, Guohua & Geng, Chenfan & Zhao, Yong & Wang, Jianhua & Jiang, Shan & Zhu, Yongnan & Wang, Qingming & Wang, Lizhen & Mu, Xing, 2021. "Food habit and climate change impacts on agricultural water security during the peak population period in China," Agricultural Water Management, Elsevier, vol. 258(C).
    13. Binglu Wu & Di Mu & Yi Luo & Zhengguang Xiao & Jilong Zhao & Dongxu Cui, 2022. "Rural Ecological Problems in China from 2013 to 2022: A Review of Research Hotspots, Geographical Distribution, and Countermeasures," Land, MDPI, vol. 11(8), pages 1-22, August.
    14. Mahdi Valikhan Anaraki & Saeed Farzin & Sayed-Farhad Mousavi & Hojat Karami, 2021. "Uncertainty Analysis of Climate Change Impacts on Flood Frequency by Using Hybrid Machine Learning Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 199-223, January.
    15. Mohammad Amin Asadi Zarch, 2022. "Past and Future Global Drought Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5259-5276, October.
    16. Liu, Xiaoli & Wang, Yandong & Zhang, Yuehe & Ren, Xiaolong & Chen, Xiaoli, 2022. "Can rainwater harvesting replace conventional irrigation for winter wheat production in dry semi-humid areas in China?," Agricultural Water Management, Elsevier, vol. 272(C).
    17. Tolessa Deksissa & Harris Trobman & Kamran Zendehdel & Hossain Azam, 2021. "Integrating Urban Agriculture and Stormwater Management in a Circular Economy to Enhance Ecosystem Services: Connecting the Dots," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    18. Faten Derouez & Adel Ifa, 2024. "Sustainable Food Security: Balancing Desalination, Climate Change, and Population Growth in Five Arab Countries Using ARDL and VECM," Sustainability, MDPI, vol. 16(6), pages 1-25, March.
    19. Zhuoqi Wang & Yuan Si & Haibo Chu, 2022. "Daily Streamflow Prediction and Uncertainty Using a Long Short-Term Memory (LSTM) Network Coupled with Bootstrap," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4575-4590, September.
    20. Dilip Kumar Roy & Kowshik Kumar Saha & Mohammad Kamruzzaman & Sujit Kumar Biswas & Mohammad Anower Hossain, 2021. "Hierarchical Fuzzy Systems Integrated with Particle Swarm Optimization for Daily Reference Evapotranspiration Prediction: a Novel Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5383-5407, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:9:d:10.1007_s11269-022-03116-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.