IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i4d10.1007_s11269-020-02516-5.html
   My bibliography  Save this article

Mitigating the Impacts of Climate Change on the Performance of Multi-Purpose Reservoirs by Changing the Operation Policy from SOP to MLDR

Author

Listed:
  • Hassan Alimohammadi

    (University of Tehran)

  • Ali Reza Massah Bavani

    (University of Tehran)

  • Abbas Roozbahani

    (University of Tehran)

Abstract

In many parts of the world, especially in metropolitan areas with dry climates, shortages of freshwater resources have become a significant challenge in water resources management. Rapid population growth and climate change in these areas impose additional burdens on water consumption, especially on surface water resources, which are increasingly becoming scarce. In this study, a change from the Standard Operating Policy (SOP) to the Modified Linear Decision Rule (MLDR) policy is considered as a solution to mitigate the impacts of climate change on dams and reservoir operation. The two policies were compared by using five reservoir system performance indices (reliability, resiliency, vulnerability, sustainability and meeting demands) and three hydropower energy generation indices. This study pertained to the Karaj hydropower dam reservoir in Iran and speculated on 2020–2039. Changing the operation policy from current SOP to the MLDR policy can mitigate the adverse effects brought by climate change. According to the results, the SOP policy works best for reservoir operation if there is enough water (optimistic scenario). In the case of pessimistic scenarios (shortage of water), operating the reservoir system with SOP policy would turn into a crisis in supplying drinking water. On the other hand, the MLDR policy prevents the complete draining of the reservoir. In all water-demand scenarios, the MLDR policy reduces the amount of time (by over 90%) in which the reservoir remains empty, compared to the SOP policy. The final results demonstrate how the MLDR policy can mitigate the undesirable effects of climate change.

Suggested Citation

  • Hassan Alimohammadi & Ali Reza Massah Bavani & Abbas Roozbahani, 2020. "Mitigating the Impacts of Climate Change on the Performance of Multi-Purpose Reservoirs by Changing the Operation Policy from SOP to MLDR," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1495-1516, March.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:4:d:10.1007_s11269-020-02516-5
    DOI: 10.1007/s11269-020-02516-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02516-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02516-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    2. Lanhai Li & Honggang Xu & Xi Chen & S. Simonovic, 2010. "Streamflow Forecast and Reservoir Operation Performance Assessment Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 83-104, January.
    3. Mahsa Jahandideh-Tehrani & Omid Bozorg Haddad & Hugo Loáiciga, 2015. "Hydropower Reservoir Management Under Climate Change: The Karoon Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 749-770, February.
    4. Hyung-Il Eum & Slobodan Simonovic, 2010. "Integrated Reservoir Management System for Adaptation to Climate Change: The Nakdong River Basin in Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3397-3417, October.
    5. Deepti Rani & Maria Moreira, 2010. "Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1107-1138, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaenam Lee & Hyungjin Shin, 2022. "Agricultural Reservoir Operation Strategy Considering Climate and Policy Changes," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
    2. Pengcheng Qin & Hongmei Xu & Min Liu & Lüliu Liu & Chan Xiao & Iman Mallakpour & Matin Rahnamay Naeini & Kuolin Hsu & Soroosh Sorooshian, 2022. "Projected impacts of climate change on major dams in the Upper Yangtze River Basin," Climatic Change, Springer, vol. 170(1), pages 1-24, January.
    3. Silvia Di Francesco & Stefano Casadei & Ilaria Di Mella & Francesca Giannone, 2022. "The Role of Small Reservoirs in a Water Scarcity Scenario: a Computational Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 875-889, February.
    4. L. V. Noto & G. Cipolla & D. Pumo & A. Francipane, 2023. "Climate Change in the Mediterranean Basin (Part II): A Review of Challenges and Uncertainties in Climate Change Modeling and Impact Analyses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2307-2323, May.
    5. Adib Roshani & Mehdi Hamidi, 2022. "Groundwater Level Fluctuations in Coastal Aquifer: Using Artificial Neural Networks to Predict the Impacts of Climatical CMIP6 Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 3981-4001, September.
    6. Israel R. Orimoloye & Johanes A. Belle & Adeyemi O. Olusola & Emmanuel T. Busayo & Olusola O. Ololade, 2021. "Spatial assessment of drought disasters, vulnerability, severity and water shortages: a potential drought disaster mitigation strategy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2735-2754, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabah Fayaed & Ahmed El-Shafie & Othman Jaafar, 2013. "Integrated Artificial Neural Network (ANN) and Stochastic Dynamic Programming (SDP) Model for Optimal Release Policy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3679-3696, August.
    2. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    3. Ali Assani & Raphaëlle Landry & Jonathan Daigle & Alain Chalifour, 2011. "Reservoirs Effects on the Interannual Variability of Winter and Spring Streamflow in the St-Maurice River Watershed (Quebec, Canada)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3661-3675, November.
    4. Saiyan Liu & Yangyang Xie & Hongyuan Fang & Qiang Huang & Shengzhi Huang & Jingcai Wang & Zhen Li, 2020. "Impacts of Inflow Variations on the Long Term Operation of a Multi-Hydropower-Reservoir System and a Strategy for Determining the Adaptable Operation Rule," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1649-1671, March.
    5. Babak Zolghadr-Asli & Omid Bozorg-Haddad & Maedeh Enayati & Erfan Goharian, 2021. "Developing a Robust Multi-Attribute Decision-Making Framework to Evaluate Performance of Water System Design and Planning under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 279-298, January.
    6. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    7. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    8. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    9. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    10. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    11. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    12. Gong, Ziqian & Baker, Justin S. & Wade, Christopher M. & Havlík, Petr, 2024. "Irrigation intensification in U.S. agriculture under climate change – an adaptation mechanism or trade-induced response?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343581, Agricultural and Applied Economics Association.
    13. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    14. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    15. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    16. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    17. Sedighkia, Mahdi & Abdoli, Asghar, 2023. "An optimization approach for managing environmental impacts of generating hydropower on fish biodiversity," Renewable Energy, Elsevier, vol. 218(C).
    18. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    19. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:4:d:10.1007_s11269-020-02516-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.