IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i5d10.1007_s11269-020-02515-6.html
   My bibliography  Save this article

Impacts of Inflow Variations on the Long Term Operation of a Multi-Hydropower-Reservoir System and a Strategy for Determining the Adaptable Operation Rule

Author

Listed:
  • Saiyan Liu

    (Yangzhou University)

  • Yangyang Xie

    (Yangzhou University
    Modern Rural Water Resources Research Institute of Yangzhou University)

  • Hongyuan Fang

    (Yangzhou University)

  • Qiang Huang

    (Xi’an University of Technology)

  • Shengzhi Huang

    (Xi’an University of Technology)

  • Jingcai Wang

    (Yangzhou University)

  • Zhen Li

    (Yangzhou University
    Modern Rural Water Resources Research Institute of Yangzhou University)

Abstract

Obvious inflow variations resulting from changing environments bring big challenges to the operations of hydropower reservoirs. This study reveals the impacts of average annual inflow volume (AAIV) variations on the long term operation of a multi-hydropower-reservoir (MHR) system, and presents a strategy for determining the adaptable operation rule. The strategy includes two parts. One part is making different inflow scenarios based on the change points of AAIVs. Another part is applying the principle of cross validation to select the adaptable rule from the formulated operation rules in various inflow scenarios. Specifically, the change points of AAIVs are identified by three statistical methods. An optimization operation model of an MHR system is built, and three evolutionary and meta-heuristic algorithms are applied to resolve the model in different inflow scenarios. Based on the optimal operation results, two machine learning algorithms are employed to formulate operation rules in each inflow scenario. The MHR system at the upstream of Yellow River basin is taken as a case study. The results show that (1) the long term operation of an MHR system is sensitive to the AAIV variations; and (2) the presented strategy is feasible in determining the adaptable operation rule for an MHR system under the AAIV variations. The findings of the study are helpful for the long term operation of an MHR system under the AAIV variations.

Suggested Citation

  • Saiyan Liu & Yangyang Xie & Hongyuan Fang & Qiang Huang & Shengzhi Huang & Jingcai Wang & Zhen Li, 2020. "Impacts of Inflow Variations on the Long Term Operation of a Multi-Hydropower-Reservoir System and a Strategy for Determining the Adaptable Operation Rule," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1649-1671, March.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:5:d:10.1007_s11269-020-02515-6
    DOI: 10.1007/s11269-020-02515-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02515-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02515-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meng, Xuejiao & Chang, Jianxia & Wang, Xuebin & Wang, Yimin, 2019. "Multi-objective hydropower station operation using an improved cuckoo search algorithm," Energy, Elsevier, vol. 168(C), pages 425-439.
    2. Ming, Bo & Liu, Pan & Guo, Shenglian & Zhang, Xiaoqi & Feng, Maoyuan & Wang, Xianxun, 2017. "Optimizing utility-scale photovoltaic power generation for integration into a hydropower reservoir by incorporating long- and short-term operational decisions," Applied Energy, Elsevier, vol. 204(C), pages 432-445.
    3. M. Reddy & D. Kumar, 2006. "Optimal Reservoir Operation Using Multi-Objective Evolutionary Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 861-878, December.
    4. Deepti Rani & Maria Moreira, 2010. "Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1107-1138, April.
    5. Maarten Krol & Marjella Vries & Pieter Oel & José Araújo, 2011. "Sustainability of Small Reservoirs and Large Scale Water Availability Under Current Conditions and Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(12), pages 3017-3026, September.
    6. Hyung-Il Eum & Slobodan Simonovic, 2010. "Integrated Reservoir Management System for Adaptation to Climate Change: The Nakdong River Basin in Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3397-3417, October.
    7. Bo Ming & Jian-xia Chang & Qiang Huang & Yi-min Wang & Sheng-zhi Huang, 2015. "Optimal Operation of Multi-Reservoir System Based-On Cuckoo Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5671-5687, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parisa-Sadat Ashofteh & Shirin Moradi Far & Parvin Golfam, 2023. "Application of Multi-Criteria Decision-Making of CODAS and SWARA in Reservoir Optimal Operation Using Marine Predator Algorithm Based on Game Theory," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4385-4412, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhang, Jingwen, 2019. "Hydropower reservoir reoperation to adapt to large-scale photovoltaic power generation," Energy, Elsevier, vol. 179(C), pages 268-279.
    2. Hyung-Il Eum & A. Vasan & Slobodan Simonovic, 2012. "Integrated Reservoir Management System for Flood Risk Assessment Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3785-3802, October.
    3. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    4. Mojtaba Moravej & Seyed-Mohammad Hosseini-Moghari, 2016. "Large Scale Reservoirs System Operation Optimization: the Interior Search Algorithm (ISA) Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3389-3407, August.
    5. Wei Zhang & Xiaohui Lei & Pan Liu & Xu Wang & Hao Wang & Peibing Song, 2019. "Identifying the Relationship between Assignments of Scenario Weights and their Positions in the Derivation of Reservoir Operating Rules under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 261-279, January.
    6. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
    7. Seyed-Mohammad Hosseini-Moghari & Reza Morovati & Mohammad Moghadas & Shahab Araghinejad, 2015. "Optimum Operation of Reservoir Using Two Evolutionary Algorithms: Imperialist Competitive Algorithm (ICA) and Cuckoo Optimization Algorithm (COA)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3749-3769, August.
    8. Hassan Alimohammadi & Ali Reza Massah Bavani & Abbas Roozbahani, 2020. "Mitigating the Impacts of Climate Change on the Performance of Multi-Purpose Reservoirs by Changing the Operation Policy from SOP to MLDR," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1495-1516, March.
    9. Gökçen Uysal & Aynur Şensoy & A. Arda Şorman & Türker Akgün & Tolga Gezgin, 2016. "Basin/Reservoir System Integration for Real Time Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1653-1668, March.
    10. Tongtiegang Zhao & Jianshi Zhao & Xiaohui Lei & Xu Wang & Bisheng Wu, 2017. "Improved Dynamic Programming for Reservoir Flood Control Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2047-2063, May.
    11. Ahmad, Shahryar Khalique & Hossain, Faisal, 2020. "Maximizing energy production from hydropower dams using short-term weather forecasts," Renewable Energy, Elsevier, vol. 146(C), pages 1560-1577.
    12. Fuxing Wang & Oliver Saavedra Valeriano & Xinguo Sun, 2013. "Near Real-Time Optimization of Multi-Reservoir during Flood Season in the Fengman Basin of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4315-4335, September.
    13. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Liao, Sheng-li, 2017. "Hydropower system operation optimization by discrete differential dynamic programming based on orthogonal experiment design," Energy, Elsevier, vol. 126(C), pages 720-732.
    14. Duan Chen & Qiuwen Chen & Arturo S. Leon & Ruonan Li, 2016. "A Genetic Algorithm Parallel Strategy for Optimizing the Operation of Reservoir with Multiple Eco-environmental Objectives," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2127-2142, May.
    15. Bilal & Deepti Rani & Millie Pant & S. K. Jain, 2020. "Dynamic programming integrated particle swarm optimization algorithm for reservoir operation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 515-529, April.
    16. Sabah Fayaed & Ahmed El-Shafie & Othman Jaafar, 2013. "Integrated Artificial Neural Network (ANN) and Stochastic Dynamic Programming (SDP) Model for Optimal Release Policy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3679-3696, August.
    17. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    18. Feng, Zhong-kai & Niu, Wen-jing & Wang, Sen & Cheng, Chun-tian & Jiang, Zhi-qiang & Qin, Hui & Liu, Yi, 2018. "Developing a successive linear programming model for head-sensitive hydropower system operation considering power shortage aspect," Energy, Elsevier, vol. 155(C), pages 252-261.
    19. Behrang Beiranvand & Parisa-Sadat Ashofteh, 2023. "A Systematic Review of Optimization of Dams Reservoir Operation Using the Meta-heuristic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3457-3526, July.
    20. A. Adeloye & B.-S. Soundharajan & C. Ojha & R. Remesan, 2016. "Effect of Hedging-Integrated Rule Curves on the Performance of the Pong Reservoir (India) During Scenario-Neutral Climate Change Perturbations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 445-470, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:5:d:10.1007_s11269-020-02515-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.