IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i3d10.1007_s11269-020-02487-7.html
   My bibliography  Save this article

Quantity of Reasonable Distribution of River Ecological Basic Flow Considering the Economic Value of its Own Ecological Functions: a Case Study in the Baoji Section of the Weihe River, China

Author

Listed:
  • Bo Cheng

    (Xi’an University of Technology)

  • Huaien Li

    (Xi’an University of Technology)

  • Siyu Yue

    (Xi’an University of Technology
    Shaanxi University of Technology)

Abstract

Reasonable allocation of ecological water and water economics has become a significant challenge for the water resource decision-makers. In this study we propose an approach to assess the quantity of reasonable distribution of the river ecological basic flow using the economic value of its own ecological function. Firstly, water resource is divided into two parts: (i) water resources used for the river ecological basic flow, its economic value was calculated using the results of a reference method; and (ii) water resources used for economic water use, and we calculated its economic benefit; (iii) By using the principle of benefit maximization, we determine the most reasonable distribution of the river ecological basic flow. The Baoji section of the Weihe River, the largest tributary of the Yellow River, Northeast China, is used as a case-study to calculate the reasonable distribution of the river ecological basic flow. The health status of the river and disadvantages of the calculation model are also analyzed. Results indicate that the reasonable allocation of the river ecological basic flow in the Baoji section of the Weihe River is 33.83% of the amount of water resources in the Linjiacun hydrologic station. Based on the calculation of the different functions of the river ecological basic flow, the reasonable distribution can meet the basic environmental functions of rivers, and can result in healthy development of basin. Results also provide a quantitative basis for water resource management in relation to water distribution in the Weihe River.

Suggested Citation

  • Bo Cheng & Huaien Li & Siyu Yue, 2020. "Quantity of Reasonable Distribution of River Ecological Basic Flow Considering the Economic Value of its Own Ecological Functions: a Case Study in the Baoji Section of the Weihe River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1111-1122, February.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:3:d:10.1007_s11269-020-02487-7
    DOI: 10.1007/s11269-020-02487-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02487-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02487-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chesheng Zhan & Sidong Zeng & Shanshan Jiang & Huixiao Wang & Wen Ye, 2014. "An Integrated Approach for Partitioning the Effect of Climate Change and Human Activities on Surface Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3843-3858, September.
    2. Qureshi, Muhammad Ejaz & Connor, Jeffery D. & Kirby, Mac & Mainuddin, Mohammed, 2007. "Economic assessment of acquiring water for environmental flows in the Murray Basin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(3), pages 1-21.
    3. Costanza, Robert, 1998. "The value of ecosystem services," Ecological Economics, Elsevier, vol. 25(1), pages 1-2, April.
    4. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture," IWMI Books, Reports H040193, International Water Management Institute.
    5. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary. In Russian," IWMI Books, Reports H041260, International Water Management Institute.
    6. Saeed Nikghalb & Alireza Shokoohi & Vijay P. Singh & Ruihong Yu, 2016. "Ecological Regime versus Minimum Environmental Flow:Comparison of Results for a River in a Semi Mediterranean Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4969-4984, October.
    7. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary. In Arabic," IWMI Books, Reports H041261, International Water Management Institute.
    8. Gopal, Brij, 2016. "A conceptual framework for environmental flows assessment based on ecosystem services and their economic valuation," Ecosystem Services, Elsevier, vol. 21(PA), pages 53-58.
    9. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary," IWMI Books, Reports H039769, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Cheng & Huaien Li, 2023. "Determination of River Ecological Base Flow Based on the Coupling Relationship of Sediment–Water Quality–Biodiversity in Water Shortage Area of Northwest China," Sustainability, MDPI, vol. 15(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher O. AKINBILE & Andrew E. ERAZUA & Toju E. BABALOLA & Fidelis O. AJIBADE, 2016. "Environmental implications of animal wastes pollution on agricultural soil and water quality," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(3), pages 172-180.
    2. Cunha, Henrique & Loureiro, Dália & Sousa, Gonçalo & Covas, Dídia & Alegre, Helena, 2019. "A comprehensive water balance methodology for collective irrigation systems," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    3. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    4. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    5. Feng Huang & Baoguo Li, 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    6. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
    7. Holland, Jonathan E. & Luck, Gary W. & Max Finlayson, C., 2015. "Threats to food production and water quality in the Murray–Darling Basin of Australia," Ecosystem Services, Elsevier, vol. 12(C), pages 55-70.
    8. repec:kqi:journl:2017-2-1-2 is not listed on IDEAS
    9. Rosa Francaviglia & Claudia Di Bene, 2019. "Deficit Drip Irrigation in Processing Tomato Production in the Mediterranean Basin. A Data Analysis for Italy," Agriculture, MDPI, vol. 9(4), pages 1-14, April.
    10. Malin Falkenmark, 2013. "Adapting to climate change: towards societal water security in dry-climate countries," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 29(2), pages 123-136, June.
    11. Kherbache, Nabil & Oukaci, Kamal, 2020. "Assessment of capital expenditure in achieving sanitation-related MDG targets and the uncertainties of the SDG targets in Algeria," World Development Perspectives, Elsevier, vol. 19(C).
    12. Tarjuelo, José M. & Rodriguez-Diaz, Juan A. & Abadía, Ricardo & Camacho, Emilio & Rocamora, Carmen & Moreno, Miguel A., 2015. "Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies," Agricultural Water Management, Elsevier, vol. 162(C), pages 67-77.
    13. Gebreegziabher, Z. & Mekonnen, A. & Beyene, A.D. & Hagos, F., 2018. "Valuation of access to irrigation water in rural Ethiopia: application of choice experiment and contingent valuation methods," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277168, International Association of Agricultural Economists.
    14. Zareena Begum Irfan & Bina Gupta, 2015. "To Consume or to Conserve: Examining Water Conservation Model for Wheat Cultivation in India," Working Papers 2015-101, Madras School of Economics,Chennai,India.
    15. Malte Müller & Jens Rommel & Christian Kimmich, 2018. "Farmers’ Adoption of Irrigation Technologies: Experimental Evidence from a Coordination Game with Positive Network Externalities in India," German Economic Review, Verein für Socialpolitik, vol. 19(2), pages 119-139, May.
    16. Unknown, 2012. "Water for wealth and food security: supporting farmer-driven investments in agricultural water management. Synthesis report of the AgWater Solutions Project," IWMI Reports 158834, International Water Management Institute.
    17. Michael Bamidele Fakoya & Emmanuel O. Imuezerua, 2021. "Improving water pricing decisions through material flow cost accounting model: a case study of the Politsi Water Treatment Scheme in South Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2243-2260, February.
    18. Mapedza, Everisto & Haileslassie, A. & Hagos, Fitsum & McCartney, Matthew & Awulachew, Seleshi Bekele & Tafesse, T., 2009. "Transboundary water governance institutional architecture: reflections from Ethiopia and Sudan," IWMI Conference Proceedings 212439, International Water Management Institute.
    19. Sikka, A. K., 2009. "Water productivity of different agricultural systems," IWMI Books, Reports H042637, International Water Management Institute.
    20. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.
    21. Ibrahim M. A. Soliman, 2019. "Forecasting Model of Wheat Yield in Relation to Rainfall Variability in North Africa Countries," International Journal of Food and Beverage Manufacturing and Business Models (IJFBMBM), IGI Global, vol. 4(2), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:3:d:10.1007_s11269-020-02487-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.