IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p4188-d360653.html
   My bibliography  Save this article

What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory

Author

Listed:
  • Feng Huang

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China
    Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, Beijing 100193, China)

  • Baoguo Li

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China
    Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, Beijing 100193, China)

Abstract

The Chinese government set up a redline for water resources in 2011, mandating water withdrawals and management criteria to the year 2030. ‘How much water is required to produce sufficient crop to feed a 1.6 billion population in 2030?’ becomes a crucial question to be addressed. The objectives of this study are to: (1) document crop water use and productivity from 1998 to 2017 and (2) define the redline water withdrawal for crop use ( REWCU ) to 2030. The study inversely inferred REWCU from broadly-defined available water for crop use ( BAWCU ) and associated parameters. Of all BAWCU, 66.3% had been consumed by crops, in which rainfall-derived water consumption accounted for 71.7% of it, while the irrigation-derived water consumption represented the remaining 28.2%. Of all the rainfall that was available for crop use, 72.1%, or the rainfall depletion rate, had been actually consumed by crop evapotranspiration (ET). Likewise, 55.2%, or the irrigation depletion rate, had been consumed by crops. Crop water productivity ( CWP ) measured by crop yield per unit ET was computed for six major crop categories. Five broad scenarios have been formulated—business as usual, optimistic, deliberative optimistic, pessimistic, and deliberative pessimistic—under lower, higher, and average population and crop projections, respectively. The projected REWCU was 4166.30 × 10 8 m 3 , and the projected agricultural water withdrawal was 4629.22 × 10 8 m 3 to 2030, representing 66.1% of the projected nationwide redline total water withdrawal ( RETWW ) of 7000 × 10 8 m 3 . The study used CWP and BAWCU to inversely infer REWCU since they reflect diverse biophysical and management factors and can be used as reliable proxies. Both methodology and research results may offer references and support when making nation- and region-wide water-for-food decisions by crop and water administrations.

Suggested Citation

  • Feng Huang & Baoguo Li, 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4188-:d:360653
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/4188/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/4188/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Yanmin & Yang, Yonghui & Moiwo, Juana Paul & Hu, Yukun, 2010. "Estimation of irrigation requirement for sustainable water resources reallocation in North China," Agricultural Water Management, Elsevier, vol. 97(11), pages 1711-1721, November.
    2. Huang, Feng & Li, Baoguo, 2010. "Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach: Part I: Method development and validation," Agricultural Water Management, Elsevier, vol. 97(7), pages 1077-1092, July.
    3. M. Dinesh Kumar & Jos C. van Dam, 2013. "Drivers of change in agricultural water productivity and its improvement at basin scale in developing economies," Water International, Taylor & Francis Journals, vol. 38(3), pages 312-325, May.
    4. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary. In Russian," IWMI Books, Reports H041260, International Water Management Institute.
    5. Rockström, Johan & Karlberg, Louise & Wani, Suhas P. & Barron, Jennie & Hatibu, Nuhu & Oweis, Theib & Bruggeman, Adriana & Farahani, Jalali & Qiang, Zhu, 2010. "Managing water in rainfed agriculture--The need for a paradigm shift," Agricultural Water Management, Elsevier, vol. 97(4), pages 543-550, April.
    6. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary. In Arabic," IWMI Books, Reports H041261, International Water Management Institute.
    7. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    8. Wang, Weiguang & Yu, Zhongbo & Zhang, Wei & Shao, Quanxi & Zhang, Yiwei & Luo, Yufeng & Jiao, Xiyun & Xu, Junzeng, 2014. "Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections," Agricultural Water Management, Elsevier, vol. 146(C), pages 249-261.
    9. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture," IWMI Books, Reports H040193, International Water Management Institute.
    10. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    11. Ye, Qing & Yang, Xiaoguang & Dai, Shuwei & Chen, Guangsheng & Li, Yong & Zhang, Caixia, 2015. "Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China," Agricultural Water Management, Elsevier, vol. 159(C), pages 35-44.
    12. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary," IWMI Books, Reports H039769, International Water Management Institute.
    13. Karimov, A. & Molden, D. & Khamzina, T. & Platonov, A. & Ivanov, Yu., 2012. "A water accounting procedure to determine the water savings potential of the Fergana Valley," Agricultural Water Management, Elsevier, vol. 108(C), pages 61-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tarjuelo, José M. & Rodriguez-Diaz, Juan A. & Abadía, Ricardo & Camacho, Emilio & Rocamora, Carmen & Moreno, Miguel A., 2015. "Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies," Agricultural Water Management, Elsevier, vol. 162(C), pages 67-77.
    2. de Fraiture, Charlotte & Molden, David & Wichelns, Dennis, 2010. "Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 495-501, April.
    3. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    4. Getnet, Kindie & Pfeifer, Catherine & MacAlister, Charlotte, 2014. "Economic incentives and natural resource management among small-scale farmers: Addressing the missing link," Ecological Economics, Elsevier, vol. 108(C), pages 1-7.
    5. Facon, T. & Mukherji, Aditi, 2010. "Small-scale irrigation: is this the future?," Conference Papers h043372, International Water Management Institute.
    6. Descheemaeker, K. & Bunting, S. W. & Bindraban, P. & Muthuri, C. & Molden, D. & Beveridge, M. & van Brakel, Martin & Herrero, M. & Clement, Floriane & Boelee, Eline & Jarvis, D. I., 2013. "Increasing water productivity in Agriculture," Book Chapters,, International Water Management Institute.
    7. Nunez, Paula & Colmenero, Alberto, 2011. "Ague, agricultura y desarrollo: avances y retos para la reduccion de la pobreza," Revista Espanola de Estudios Agrosociales y Pesqueros, Ministerio de Medio Ambiente, Rural y Marino (formerly Ministry of Agriculture), issue 230, pages 1-28.
    8. Christopher O. AKINBILE & Andrew E. ERAZUA & Toju E. BABALOLA & Fidelis O. AJIBADE, 2016. "Environmental implications of animal wastes pollution on agricultural soil and water quality," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(3), pages 172-180.
    9. Cunha, Henrique & Loureiro, Dália & Sousa, Gonçalo & Covas, Dídia & Alegre, Helena, 2019. "A comprehensive water balance methodology for collective irrigation systems," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    10. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    11. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    12. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    13. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
    14. Holland, Jonathan E. & Luck, Gary W. & Max Finlayson, C., 2015. "Threats to food production and water quality in the Murray–Darling Basin of Australia," Ecosystem Services, Elsevier, vol. 12(C), pages 55-70.
    15. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "WATPRO: A remote sensing based model for mapping water productivity of wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1628-1636, October.
    16. repec:kqi:journl:2017-2-1-2 is not listed on IDEAS
    17. Andrew J. Wiltshire & Gillian Kay & Jemma L. Gornall & Richard A. Betts, 2013. "The Impact of Climate, CO 2 and Population on Regional Food and Water Resources in the 2050s," Sustainability, MDPI, vol. 5(5), pages 1-23, May.
    18. Rosa Francaviglia & Claudia Di Bene, 2019. "Deficit Drip Irrigation in Processing Tomato Production in the Mediterranean Basin. A Data Analysis for Italy," Agriculture, MDPI, vol. 9(4), pages 1-14, April.
    19. Malin Falkenmark, 2013. "Adapting to climate change: towards societal water security in dry-climate countries," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 29(2), pages 123-136, June.
    20. Kherbache, Nabil & Oukaci, Kamal, 2020. "Assessment of capital expenditure in achieving sanitation-related MDG targets and the uncertainties of the SDG targets in Algeria," World Development Perspectives, Elsevier, vol. 19(C).
    21. Gebreegziabher, Z. & Mekonnen, A. & Beyene, A.D. & Hagos, F., 2018. "Valuation of access to irrigation water in rural Ethiopia: application of choice experiment and contingent valuation methods," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277168, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4188-:d:360653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.