IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i13d10.1007_s11269-016-1488-2.html
   My bibliography  Save this article

Ecological Regime versus Minimum Environmental Flow:Comparison of Results for a River in a Semi Mediterranean Region

Author

Listed:
  • Saeed Nikghalb

    (Imam Khomeini International University)

  • Alireza Shokoohi

    (Imam Khomeini International University)

  • Vijay P. Singh

    (Texas A&M University)

  • Ruihong Yu

    (Inner Mongolia University)

Abstract

Maintaining Environmental Flow (EF) plays a critical role in protecting rivers and their ecosystems. Because of shortage of data and limited financial resources in developing countries, there is a tendency to use simple hydrologic methods against comprehensive EF assessment methods. In this research, two most common hydrologic methods (Tennant and Q95) were compared with a habitat simulation method (PHABSIM) under the condition of data shortage. It was concluded that while the results of habitat simulation method even using imprecise input data were justified, the impacts of implementing EF discharges of the two hydrologic methods on the ecosystem might be irreversible. It was found that the Tennant and Q95 methods led to dramatically low discharges as fixed minimum environmental flows, while habitat simulation method gave an acceptable ecological regime. In the absence of ecological data and after deciding on the target species in a case study in the southern part of the Caspian Sea, a special Delphi technique was employed for preparing the suitability data. For enhancing the PHABSIM hydraulic module results, HEC-RAS was implemented for hydraulic simulation and then with a simple modification on average velocity, the cross-sectional velocity distribution for deriving the Weighted Usable Area (WUA) was generated. It was found that this method along with maintaining high flows in the river preserved Mean Annual Flow (MAF) during wet months and preserved Mean Annual Low Flow (MALF) during dry months which is equal to maintaining Environmental Flow Requirement (EFR) in such a way that provides the river with an ecological regime near its historical one and guarantees river health.

Suggested Citation

  • Saeed Nikghalb & Alireza Shokoohi & Vijay P. Singh & Ruihong Yu, 2016. "Ecological Regime versus Minimum Environmental Flow:Comparison of Results for a River in a Semi Mediterranean Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4969-4984, October.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:13:d:10.1007_s11269-016-1488-2
    DOI: 10.1007/s11269-016-1488-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1488-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1488-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wentong Hu & Wenquan Gu & Donghao Miao & Dongguo Shao, 2022. "Research on the Ecological Flow and Water Replenishment Thresholds for Diversion Rivers Based on the MC-LOR Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5353-5369, November.
    2. Ravindra Kumar Verma & Ashish Pandey & Surendra Kumar Mishra & Vijay P. Singh, 2023. "A Procedure for Assessment of Environmental Flows Incorporating Inter- and Intra-Annual Variability in Dam-Regulated Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3259-3297, June.
    3. Byungwoong Choi & Byungik Kim & Jonghwan Park & Tae-Woo Kang & Dong-Seok Shin & Eun Hye Na & Jiyeon Choi, 2022. "An Integrated Modelling Study on the Effects of Weir Operation Scenarios on Aquatic Habitat Changes in the Yeongsan River," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    4. Wei Xu, 2020. "Study on Multi-Objective Operation Strategy for Multi-Reservoirs in Small-Scale Watershed Considering Ecological Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4725-4738, December.
    5. Li, Xinyu & Zhang, Qirui & Diao, Yanfang & Shi, Yuzhi & Li, Shuxian & Yao, Chuanhui & Su, Rui & Guo, Shichao, 2024. "Ecological flow considering hydrological season and habitat suitability for a variety of fish," Ecological Modelling, Elsevier, vol. 489(C).
    6. Bo Cheng & Huaien Li & Siyu Yue, 2020. "Quantity of Reasonable Distribution of River Ecological Basic Flow Considering the Economic Value of its Own Ecological Functions: a Case Study in the Baoji Section of the Weihe River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1111-1122, February.
    7. Xin Yan & Yuejian Wang & Yuejiao Chen & Guang Yang & Baofei Xia & Hailiang Xu, 2022. "Study on the Spatial Allocation of Receding Land and Water Reduction under Water Resource Constraints in Arid Zones," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    8. Rong-Song Chen & Chan-Ming Tsai, 2017. "Development of an Evaluation System for Sustaining Reservoir Functions—A Case Study of Shiwen Reservoir in Taiwan," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    9. Mahdi Sedighkia & Asghar Abdoli, 2022. "Optimizing environmental flow regime by integrating river and reservoir ecosystems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2079-2094, April.
    10. Kim, Seung Ki & Choi, Sung-Uk, 2018. "Prediction of suitable feeding habitat for fishes in a stream using physical habitat simulations," Ecological Modelling, Elsevier, vol. 385(C), pages 65-77.
    11. Soohong Kim & Kichul Jung & Hyeongsik Kang, 2022. "Response of Fish Community to Building Block Methodology Mimicking Natural Flow Regime Patterns in Nakdong River in South Korea," Sustainability, MDPI, vol. 14(6), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:13:d:10.1007_s11269-016-1488-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.