IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13431-d1235256.html
   My bibliography  Save this article

Determination of River Ecological Base Flow Based on the Coupling Relationship of Sediment–Water Quality–Biodiversity in Water Shortage Area of Northwest China

Author

Listed:
  • Bo Cheng

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China)

  • Huaien Li

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China)

Abstract

Maintaining the integrity of ecosystem service functions of rivers has become the top issue in the water shortage area of Northwest China. By combining the coupling relationship of sediment, water quality, and biodiversity and the hydraulic relationship of the section, we established a quantitative calculation method for the river ecological base flow, which is mainly divided into the following three steps: first, we determined the reasonable ecological flow velocity range of rivers via water purification, maintaining the river geometry and biodiversity; second, we combined the hydraulic relationship between the river ecological velocity range and the river ecological base flow to determine the protection target of the river ecological base flow; finally, we combined the remaining water volume of rivers and ecological base flow protection target of rivers to determine their protection rate. Take the Baoji section of the Weihe River as an example: the results show that the ecological base flow in the Baoji section of the Weihe River is [6.26, 9.17 m 3 /s] and [32.94, 38.93 m 3 /s] from October of this year to May of next year and from June to September, respectively, and the protection rates of the ecological base flow for five typical years are 62.47%, 41.10%, 16.16%, 15.07%, and 10.68%. These coupling methods can also be used in the world’s river basin, which has similar problems.

Suggested Citation

  • Bo Cheng & Huaien Li, 2023. "Determination of River Ecological Base Flow Based on the Coupling Relationship of Sediment–Water Quality–Biodiversity in Water Shortage Area of Northwest China," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13431-:d:1235256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13431/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13431/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chesheng Zhan & Sidong Zeng & Shanshan Jiang & Huixiao Wang & Wen Ye, 2014. "An Integrated Approach for Partitioning the Effect of Climate Change and Human Activities on Surface Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3843-3858, September.
    2. Bo Cheng & Huaien Li & Siyu Yue, 2020. "Quantity of Reasonable Distribution of River Ecological Basic Flow Considering the Economic Value of its Own Ecological Functions: a Case Study in the Baoji Section of the Weihe River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1111-1122, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue-hua Zhao & Xu Chen, 2015. "Auto Regressive and Ensemble Empirical Mode Decomposition Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2913-2926, June.
    2. Bo Cheng & Huaien Li & Siyu Yue, 2020. "Quantity of Reasonable Distribution of River Ecological Basic Flow Considering the Economic Value of its Own Ecological Functions: a Case Study in the Baoji Section of the Weihe River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1111-1122, February.
    3. Jianzhu Li & Guoqing Li & Shuhan Zhou & Fulong Chen, 2016. "Quantifying the Effects of Land Surface Change on Annual Runoff Considering Precipitation Variability by SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1071-1084, February.
    4. Junlong Liu & Jin Chen & Jijun Xu & Yuru Lin & Zhe Yuan & Mingyuan Zhou, 2019. "Attribution of Runoff Variation in the Headwaters of the Yangtze River Based on the Budyko Hypothesis," IJERPH, MDPI, vol. 16(14), pages 1-15, July.
    5. Wei Liang & Dan Bai & Zhao Jin & Yuchi You & Jiaxing Li & Yuting Yang, 2015. "A Study on the Streamflow Change and its Relationship with Climate Change and Ecological Restoration Measures in a Sediment Concentrated Region in the Loess Plateau, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4045-4060, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13431-:d:1235256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.