IDEAS home Printed from https://ideas.repec.org/p/ags/iwmirp/201006.html
   My bibliography  Save this paper

Global water demand projections: past, present and future

Author

Listed:
  • Amarasinghe, Upali A.
  • Smakhtin, Vladimir

Abstract

A review of global water demand projections (WDPs) show substantial overpredictions or under-predictions. The pre-1990 WDPs, with population as the main driver of change, overpredicted current water use by 20 to 130%. The post-1990 WDPs, with sophisticated modeling frameworks, show substantial underestimation under the ‘business-as-usual’ scenarios and are more downward biased under sustainable scenarios. Overall, the value of long-term country-level projections in global WDPs is inadequate for local water resource planning. To increase the accuracy and value of global WDPs, future WDPs should take into account the spatial variation and influence of rapidly changing key exogenous and endogenous drivers of water demand in different sectors across and within countries, and provide a sensitivity analysis of projections.

Suggested Citation

  • Amarasinghe, Upali A. & Smakhtin, Vladimir, 2014. "Global water demand projections: past, present and future," IWMI Reports 201006, International Water Management Institute.
  • Handle: RePEc:ags:iwmirp:201006
    DOI: 10.22004/ag.econ.201006
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/201006/files/rr156.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.201006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Md. Islam & Taikan Oki & Shinjiro Kanae & Naota Hanasaki & Yasushi Agata & Kei Yoshimura, 2007. "A grid-based assessment of global water scarcity including virtual water trading," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 19-33, January.
    2. World Bank, 2014. "World Development Indicators 2014," World Bank Publications - Books, The World Bank Group, number 18237.
    3. Seckler, David & Amarasinghe, Upali A. & Molden, David J. & de Silva, Radhika & Barker, Randolph, 1998. "World water demand and supply, 1990 to 2025: scenarios and issues," IWMI Research Reports 61108, International Water Management Institute.
    4. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture," IWMI Books, Reports H040193, International Water Management Institute.
    5. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary. In Russian," IWMI Books, Reports H041260, International Water Management Institute.
    6. World Bank, 2012. "World Development Indicators 2012," World Bank Publications - Books, The World Bank Group, number 6014.
    7. P. C. D. Milly & K. A. Dunne & A. V. Vecchia, 2005. "Global pattern of trends in streamflow and water availability in a changing climate," Nature, Nature, vol. 438(7066), pages 347-350, November.
    8. Amarasinghe, Upali & Shah, Tushaar & Turral, Hugh & Anand, B. K., 2007. "India’s water future to 2025-2050: Business-as-usual scenario and deviations," IWMI Research Reports H040852, International Water Management Institute.
    9. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary. In Arabic," IWMI Books, Reports H041261, International Water Management Institute.
    10. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary," IWMI Books, Reports H039769, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jing & Hertel, Thomas & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz & Grogan, Danielle & Frolking, Steve, 2016. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Production and Land Use," Conference papers 332691, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    2. Narayanamoorthy, A & Bhattarai, M & Jothi, P, 2018. "An assessment of the economic impact of drip irrigation in vegetable production in India," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 31(1).
    3. Arowoshegbe, Amos & Emeni, Francis & Uniamikogbo, Emmanuel, 2018. "Impact Of Water Accounting On Water Supply In Nigeria," International Journal of Contemporary Accounting Issues-IJCAI (formerly International Journal of Accounting & Finance IJAF), The Institute of Chartered Accountants of Nigeria (ICAN), vol. 7(2), pages 160-183, December.
    4. Yufeng Luo & Seydou Traore & Xinwei Lyu & Weiguang Wang & Ying Wang & Yongyu Xie & Xiyun Jiao & Guy Fipps, 2015. "Medium Range Daily Reference Evapotranspiration Forecasting by Using ANN and Public Weather Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3863-3876, August.
    5. A. Narayanamoorthy & N. Devika & M. Bhattarai, 2016. "More Crop and Profit per Drop of Water: Drip Irrigation for Empowering Distressed Small Farmers," IIM Kozhikode Society & Management Review, , vol. 5(1), pages 83-90, January.
    6. Liu, Jing & Hertel, Thomas W. & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz C. & Grogan, Danielle S. & Frolking, Steve, 2017. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Security and Land Use," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258118, Agricultural and Applied Economics Association.
    7. Phong Tung Nguyen & Duong Hai Ha & Huu Duy Nguyen & Tran Van Phong & Phan Trong Trinh & Nadhir Al-Ansari & Hiep Van Le & Binh Thai Pham & Lanh Si Ho & Indra Prakash, 2020. "Improvement of Credal Decision Trees Using Ensemble Frameworks for Groundwater Potential Modeling," Sustainability, MDPI, vol. 12(7), pages 1-28, March.
    8. Phong Tung Nguyen & Duong Hai Ha & Abolfazl Jaafari & Huu Duy Nguyen & Tran Van Phong & Nadhir Al-Ansari & Indra Prakash & Hiep Van Le & Binh Thai Pham, 2020. "Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam," IJERPH, MDPI, vol. 17(7), pages 1-20, April.
    9. Kusum Pandey & Shiv Kumar & Anurag Malik & Alban Kuriqi, 2020. "Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal Groundwater Table Depth Prediction in Uttar Pradesh, India," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    10. David D. J. Antia, 2016. "ZVI (Fe 0 ) Desalination: Stability of Product Water," Resources, MDPI, vol. 5(1), pages 1-47, March.
    11. Xiao-Jun Wang & Jian-Yun Zhang & Shamsuddin Shahid & Wei Xie & Chao-Yang Du & Xiao-Chuan Shang & Xu Zhang, 2018. "Modeling domestic water demand in Huaihe River Basin of China under climate change and population dynamics," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(2), pages 911-924, April.
    12. Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
    13. Nassima Amiri & Rachid Lahlali & Said Amiri & Moussa EL Jarroudi & Mohammed Yacoubi Khebiza & Mohammed Messouli, 2021. "Development of an Integrated Model to Assess the Impact of Agricultural Practices and Land Use on Agricultural Production in Morocco under Climate Stress over the Next Twenty Years," Sustainability, MDPI, vol. 13(21), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," Book Chapters,, International Water Management Institute.
    2. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    3. Getnet, Kindie & Pfeifer, Catherine & MacAlister, Charlotte, 2014. "Economic incentives and natural resource management among small-scale farmers: Addressing the missing link," Ecological Economics, Elsevier, vol. 108(C), pages 1-7.
    4. Christopher O. AKINBILE & Andrew E. ERAZUA & Toju E. BABALOLA & Fidelis O. AJIBADE, 2016. "Environmental implications of animal wastes pollution on agricultural soil and water quality," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(3), pages 172-180.
    5. Madan Jha & Y. Kamii & K. Chikamori, 2009. "Cost-effective Approaches for Sustainable Groundwater Management in Alluvial Aquifer Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(2), pages 219-233, January.
    6. Cunha, Henrique & Loureiro, Dália & Sousa, Gonçalo & Covas, Dídia & Alegre, Helena, 2019. "A comprehensive water balance methodology for collective irrigation systems," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    7. Emmanuel Obuobie & Deborah Ofori & Sampson Kwaku Agodzo & Collins Okrah, 2013. "Groundwater potential for dry-season irrigation in north-eastern Ghana," Water International, Taylor & Francis Journals, vol. 38(4), pages 433-448, July.
    8. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    9. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    10. Prem S. Bindraban & Christian O. Dimkpa & Scott Angle & Rudy Rabbinge, 2018. "Unlocking the multiple public good services from balanced fertilizers," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(2), pages 273-285, April.
    11. Feng Huang & Baoguo Li, 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    12. Dellachiesa, Alejandro E. & Myint, Aung P., 2016. "Trade openness and the changing water polluting intensity patterns of ‘dirty’ and ‘clean’ industrial sectors," Ecological Economics, Elsevier, vol. 129(C), pages 143-151.
    13. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
    14. Holland, Jonathan E. & Luck, Gary W. & Max Finlayson, C., 2015. "Threats to food production and water quality in the Murray–Darling Basin of Australia," Ecosystem Services, Elsevier, vol. 12(C), pages 55-70.
    15. Kari E. R. Heerman & Ian M. Sheldon, 2022. "Sustainable agricultural production, income, and eco‐labeling: What can be learned from a modern Ricardian approach?," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(4), pages 1614-1636, December.
    16. Susanne M. Scheierling, 2016. "Editorial: “Agricultural Water and Groundwater Management: An Introduction to the Special Issue”," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-6, September.
    17. Maksud Bekchanov & Claudia Ringler & Anik Bhaduri & Marc Jeuland, 2015. "How would the Rogun Dam affect water and energy scarcity in Central Asia?," Water International, Taylor & Francis Journals, vol. 40(5-6), pages 856-876, September.
    18. Owusu-Sekyere, Enoch & Scheepers, Morné Erwin & Jordaan, Henry, 2017. "Economic Water Productivities Along the Dairy Value Chain in South Africa: Implications for Sustainable and Economically Efficient Water-use Policies in the Dairy Industry," Ecological Economics, Elsevier, vol. 134(C), pages 22-28.
    19. repec:kqi:journl:2017-2-1-2 is not listed on IDEAS
    20. Andrew J. Wiltshire & Gillian Kay & Jemma L. Gornall & Richard A. Betts, 2013. "The Impact of Climate, CO 2 and Population on Regional Food and Water Resources in the 2050s," Sustainability, MDPI, vol. 5(5), pages 1-23, May.
    21. Golam Rasul & Bikash Sharma, 2016. "The nexus approach to water–energy–food security: an option for adaptation to climate change," Climate Policy, Taylor & Francis Journals, vol. 16(6), pages 682-702, August.

    More about this item

    Keywords

    Agricultural and Food Policy; Production Economics;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iwmirp:201006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iwmiclk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.