IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i5d10.1007_s11269-018-1901-0.html
   My bibliography  Save this article

Multivariate Frequency Analysis of Meteorological Drought Using Copula

Author

Listed:
  • Lamneithem Hangshing

    (Deemed University)

  • Parmendra P. Dabral

    (Deemed University)

Abstract

The multivariate frequency analysis of droughts for Agartala (India) was carried out in the present study. The meteorological drought was modelled using Standardised Precipitation Index(SPI) at the time scale of 1, 3, 6 and 12 months. Three droughts variables i.e., duration, severity, interval were determined for SPI at the time scale of 1, 3, 6 and 12 months. For the construction of bivariate and trivariate joint distributions Archimedean and metaelliptical copulas were used. Upper tail dependence test was also carried out. The best copula was selected based on minimum value Akaike’s information criteria (AIC)) and Schwarz information criterion(SIC). The drought risk was estimated using joint probabilities and return period for the study area.

Suggested Citation

  • Lamneithem Hangshing & Parmendra P. Dabral, 2018. "Multivariate Frequency Analysis of Meteorological Drought Using Copula," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1741-1758, March.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:5:d:10.1007_s11269-018-1901-0
    DOI: 10.1007/s11269-018-1901-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-1901-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-1901-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frahm, Gabriel & Junker, Markus & Schmidt, Rafael, 2005. "Estimating the tail-dependence coefficient: Properties and pitfalls," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 80-100, August.
    2. J. Shiau, 2006. "Fitting Drought Duration and Severity with Two-Dimensional Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(5), pages 795-815, October.
    3. G. Tsakiris & D. Pangalou & H. Vangelis, 2007. "Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 821-833, May.
    4. George Tsakiris & Nikos Kordalis & Dimitris Tigkas & Vasileios Tsakiris & Harris Vangelis, 2016. "Analysing Drought Severity and Areal Extent by 2D Archimedean Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5723-5735, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liping Wang & Xingnan Zhang & Shufang Wang & Mohamed Khaled Salahou & Yuanhao Fang, 2020. "Analysis and Application of Drought Characteristics Based on Theory of Runs and Copulas in Yunnan, Southwest China," IJERPH, MDPI, vol. 17(13), pages 1-17, June.
    2. Elaheh Motevali Bashi Naeini & Ali Mohammad Akhoond-Ali & Fereydoun Radmanesh & Jahangir Abedi Koupai & Shahrokh Soltaninia, 2021. "Comparison of the Calculated Drought Return Periods Using Tri-variate and Bivariate Copula Functions Under Climate Change Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4855-4875, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poulomi Ganguli & M. Reddy, 2012. "Risk Assessment of Droughts in Gujarat Using Bivariate Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3301-3327, September.
    2. Vergni, L. & Todisco, F. & Di Lena, B. & Mannocchi, F., 2020. "Bivariate analysis of drought duration and severity for irrigation planning," Agricultural Water Management, Elsevier, vol. 229(C).
    3. Dunxian She & Jun Xia, 2018. "Copulas-Based Drought Characteristics Analysis and Risk Assessment across the Loess Plateau of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 547-564, January.
    4. Ziqiang Xing & Denghua Yan & Cheng Zhang & Gang Wang & Dongdong Zhang, 2015. "Spatial Characterization and Bivariate Frequency Analysis of Precipitation and Runoff in the Upper Huai River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3291-3304, July.
    5. Mohammad Amin Asadi Zarch, 2022. "Past and Future Global Drought Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5259-5276, October.
    6. Rina Wu & Jiquan Zhang & Yuhai Bao & Enliang Guo, 2019. "Run Theory and Copula-Based Drought Risk Analysis for Songnen Grassland in Northeastern China," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
    7. Olusola O. Ayantobo & Yi Li & Songbai Song, 2019. "Multivariate Drought Frequency Analysis using Four-Variate Symmetric and Asymmetric Archimedean Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 103-127, January.
    8. L. Vergni & F. Todisco & F. Mannocchi, 2015. "Analysis of agricultural drought characteristics through a two-dimensional copula," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2819-2835, June.
    9. Panagiotis Angelidis & Fotios Maris & Nikos Kotsovinos & Vlassios Hrissanthou, 2012. "Computation of Drought Index SPI with Alternative Distribution Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2453-2473, July.
    10. Elaheh Motevali Bashi Naeini & Ali Mohammad Akhoond-Ali & Fereydoun Radmanesh & Jahangir Abedi Koupai & Shahrokh Soltaninia, 2021. "Comparison of the Calculated Drought Return Periods Using Tri-variate and Bivariate Copula Functions Under Climate Change Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4855-4875, November.
    11. Kimia Naderi & Mahnoosh Moghaddasi & Ashkan shokri, 2022. "Drought Occurrence Probability Analysis Using Multivariate Standardized Drought Index and Copula Function Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2865-2888, June.
    12. Shahid Latif & Slobodan P. Simonovic, 2023. "Trivariate Probabilistic Assessments of the Compound Flooding Events Using the 3-D Fully Nested Archimedean (FNA) Copula in the Semiparametric Distribution Setting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1641-1693, March.
    13. Fadhilah Yusof & Foo Hui-Mean & Jamaludin Suhaila & Zulkifli Yusof, 2013. "Characterisation of Drought Properties with Bivariate Copula Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4183-4207, September.
    14. Dong-Dong Zhang & Deng-Hua Yan & Fan Lu & Yi-Cheng Wang & Jing Feng, 2015. "Copula-based risk assessment of drought in Yunnan province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2199-2220, February.
    15. Antonino Cancelliere, 2017. "Non Stationary Analysis of Extreme Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3097-3110, August.
    16. Jenq-Tzong Shiau & Jia-Wei Lin, 2016. "Clustering Quantile Regression-Based Drought Trends in Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1053-1069, February.
    17. Abdelaaziz Merabti & Mohamed Meddi & Diogo S. Martins & Luis S. Pereira, 2018. "Comparing SPI and RDI Applied at Local Scale as Influenced by Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1071-1085, February.
    18. Abdelaaziz Merabti & Diogo S. Martins & Mohamed Meddi & Luis S. Pereira, 2018. "Spatial and Time Variability of Drought Based on SPI and RDI with Various Time Scales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1087-1100, February.
    19. George Tsakiris, 2017. "Drought Risk Assessment and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3083-3095, August.
    20. Ming Li & Guiwen Wang & Shengwei Zong & Xurong Chai, 2023. "Copula-Based Assessment and Regionalization of Drought Risk in China," IJERPH, MDPI, vol. 20(5), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:5:d:10.1007_s11269-018-1901-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.