IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v65y2013i3p1293-1311.html
   My bibliography  Save this article

Detecting hydro-climatic change using spatiotemporal analysis of rainfall time series in Western Algeria

Author

Listed:
  • Leila Hamlaoui-Moulai
  • Mohammed Mesbah
  • Doudja Souag-Gamane
  • Abderrahmane Medjerab

Abstract

The knowledge of the climatic behavior especially that one of semi-arid regions is required to optimize the management of water resources. Here climate variability is directly related to water resources that are of a high socio-economic and environmental significance. This work deals mainly with a statistical analysis of the precipitation regime to assess its spatial distribution and temporal variation in north-western Algeria. For this, a time series and a principal component analysis are performed on rainfall series representing annual precipitations of twenty-one meteorological stations for the period 1914 to 2004, the most complete and longest of West Algeria, in order to detect patterns and trends in the region. A spectral analysis of the time series revealed the existence of a period of roughly 30 years for all stations. Furthermore, the trend of a wide part of the obtained spectra suggests the existence of another period longer than the samples size. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Leila Hamlaoui-Moulai & Mohammed Mesbah & Doudja Souag-Gamane & Abderrahmane Medjerab, 2013. "Detecting hydro-climatic change using spatiotemporal analysis of rainfall time series in Western Algeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1293-1311, February.
  • Handle: RePEc:spr:nathaz:v:65:y:2013:i:3:p:1293-1311
    DOI: 10.1007/s11069-012-0411-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0411-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0411-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed Meddi & Ali Assani & Hind Meddi, 2010. "Temporal Variability of Annual Rainfall in the Macta and Tafna Catchments, Northwestern Algeria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3817-3833, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richarde Silva & Celso Santos & Madalena Moreira & João Corte-Real & Valeriano Silva & Isabella Medeiros, 2015. "Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1205-1221, June.
    2. Bilel Zerouali & Mohamed Chettih & Zaki Abda & Mohamed Mesbah & Celso Augusto Guimarães Santos & Reginaldo Moura Brasil Neto & Richarde Marques Silva, 2021. "Spatiotemporal meteorological drought assessment in a humid Mediterranean region: case study of the Oued Sebaou basin (northern central Algeria)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 689-709, August.
    3. Richarde Marques Silva & Celso Augusto Guimarães Santos & Jorge Flávio Cazé Braga Costa Silva & Alexandro Medeiros Silva & Reginaldo Moura Brasil Neto, 2020. "Spatial distribution and estimation of rainfall trends and erosivity in the Epitácio Pessoa reservoir catchment, Paraíba, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 829-849, July.
    4. B. Yue & Z. Shi & N. Fang, 2014. "Evaluation of rainfall erosivity and its temporal variation in the Yanhe River catchment of the Chinese Loess Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 585-602, November.
    5. Abdelaaziz Merabti & Mohamed Meddi & Diogo S. Martins & Luis S. Pereira, 2018. "Comparing SPI and RDI Applied at Local Scale as Influenced by Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1071-1085, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Assani & Raphaëlle Landry & Jonathan Daigle & Alain Chalifour, 2011. "Reservoirs Effects on the Interannual Variability of Winter and Spring Streamflow in the St-Maurice River Watershed (Quebec, Canada)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3661-3675, November.
    2. Mohammed Achite & Gokmen Ceribasi & Ahmet Iyad Ceyhunlu & Andrzej Wałęga & Tommaso Caloiero, 2021. "The Innovative Polygon Trend Analysis (IPTA) as a Simple Qualitative Method to Detect Changes in Environment—Example Detecting Trends of the Total Monthly Precipitation in Semiarid Area," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    3. Wörman, Anders & Uvo, Cintia Bertacchi & Brandimarte, Luigia & Busse, Stefan & Crochemore, Louise & Lopez, Marc Girons & Hao, Shuang & Pechlivanidis, Ilias & Riml, Joakim, 2020. "Virtual energy storage gain resulting from the spatio-temporal coordination of hydropower over Europe," Applied Energy, Elsevier, vol. 272(C).
    4. Ayoub Zeroual & Mohamed Meddi & Ali A. Assani, 2016. "Artificial Neural Network Rainfall-Discharge Model Assessment Under Rating Curve Uncertainty and Monthly Discharge Volume Predictions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3191-3205, July.
    5. Bilel Zerouali & Mohamed Chettih & Zaki Abda & Mohamed Mesbah & Celso Augusto Guimarães Santos & Reginaldo Moura Brasil Neto & Richarde Marques Silva, 2021. "Spatiotemporal meteorological drought assessment in a humid Mediterranean region: case study of the Oued Sebaou basin (northern central Algeria)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 689-709, August.
    6. Jianzhu Li & Senming Tan & Zhaozhen Wei & Fulong Chen & Ping Feng, 2014. "A New Method of Change Point Detection Using Variable Fuzzy Sets Under Environmental Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5125-5138, November.
    7. Wei Liang & Dan Bai & Zhao Jin & Yuchi You & Jiaxing Li & Yuting Yang, 2015. "A Study on the Streamflow Change and its Relationship with Climate Change and Ecological Restoration Measures in a Sediment Concentrated Region in the Loess Plateau, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4045-4060, September.
    8. Ali Assani & Alain Chalifour & Guillaume Légaré & Caza-Szoka Manouane & Denis Leroux, 2011. "Temporal Regionalization of 7-Day Low Flows in the St. Lawrence Watershed in Quebec (Canada)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3559-3574, November.
    9. Luigia Brandimarte & Giuliano Baldassarre & Guendalina Bruni & Paolo D’Odorico & Alberto Montanari, 2011. "Relation Between the North-Atlantic Oscillation and Hydroclimatic Conditions in Mediterranean Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1269-1279, March.
    10. Mohammed Achite & Tommaso Caloiero & Abderrezak Kamel Toubal, 2022. "Rainfall and Runoff Trend Analysis in the Wadi Mina Basin (Northern Algeria) Using Non-Parametric Tests and the ITA Method," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    11. Abdelaaziz Merabti & Mohamed Meddi & Diogo S. Martins & Luis S. Pereira, 2018. "Comparing SPI and RDI Applied at Local Scale as Influenced by Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1071-1085, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:65:y:2013:i:3:p:1293-1311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.