IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1832-d231128.html
   My bibliography  Save this article

Predicting Energy Generation Using Forecasting Techniques in Catalan Reservoirs

Author

Listed:
  • Raúl Parada

    (Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya (UOC), 08035 Barcelona, Spain)

  • Jordi Font

    (Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya (UOC), 08035 Barcelona, Spain)

  • Jordi Casas-Roma

    (Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya (UOC), 08035 Barcelona, Spain)

Abstract

Reservoirs are natural or artificial lakes used as a source of water supply for society daily applications. In addition, hydroelectric power plants produce electricity while water flows through the reservoir. However, reservoirs are limited natural resources since water levels vary according to annual rainfalls and other natural events, and consequently, the energy generation. Therefore, forecasting techniques are helpful to predict water level, and thus, electricity production. This paper examines state-of-the-art methods to predict the water level in Catalan reservoirs comparing two approaches: using the water level uniquely, uni-variant; and adding meteorological data, multi-variant. With respect to relating works, our contribution includes a longer times series prediction keeping a high precision. The results return that combining Support Vector Machine and the multi-variant approach provides the highest precision with an R 2 value of 0.99.

Suggested Citation

  • Raúl Parada & Jordi Font & Jordi Casas-Roma, 2019. "Predicting Energy Generation Using Forecasting Techniques in Catalan Reservoirs," Energies, MDPI, vol. 12(10), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1832-:d:231128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1832/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1832/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Afiq Hipni & Ahmed El-shafie & Ali Najah & Othman Karim & Aini Hussain & Muhammad Mukhlisin, 2013. "Erratum to: Daily Forecasting of Dam Water Levels: Comparing a Support Vector Machine (SVM) Model With Adaptive Neuro Fuzzy Inference System (ANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4113-4113, September.
    2. Chatfield, Chris, 1993. "Neural networks: Forecasting breakthrough or passing fad?," International Journal of Forecasting, Elsevier, vol. 9(1), pages 1-3, April.
    3. Nariman Valizadeh & Ahmed El-Shafie, 2013. "Forecasting the Level of Reservoirs Using Multiple Input Fuzzification in ANFIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3319-3331, July.
    4. Afiq Hipni & Ahmed El-shafie & Ali Najah & Othman Karim & Aini Hussain & Muhammad Mukhlisin, 2013. "Daily Forecasting of Dam Water Levels: Comparing a Support Vector Machine (SVM) Model With Adaptive Neuro Fuzzy Inference System (ANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3803-3823, August.
    5. Ozgur Kisi & Alireza Nia & Mohsen Gosheh & Mohammad Tajabadi & Azadeh Ahmadi, 2012. "Intermittent Streamflow Forecasting by Using Several Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 457-474, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed El-Shafie & Amr El-Shafie & Muhammad Mukhlisin, 2014. "New Approach: Integrated Risk-Stochastic Dynamic Model for Dam and Reservoir Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2093-2107, June.
    2. Ozgur Kisi, 2015. "Streamflow Forecasting and Estimation Using Least Square Support Vector Regression and Adaptive Neuro-Fuzzy Embedded Fuzzy c-means Clustering," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5109-5127, November.
    3. Zhang, Zixiong & Gong, Yicheng & Wang, Zhongjing, 2018. "Accessible remote sensing data based reference evapotranspiration estimation modelling," Agricultural Water Management, Elsevier, vol. 210(C), pages 59-69.
    4. Ali Nouh Mabdeh & A’kif Al-Fugara & Khaled Mohamed Khedher & Muhammed Mabdeh & Abdel Rahman Al-Shabeeb & Rida Al-Adamat, 2022. "Forest Fire Susceptibility Assessment and Mapping Using Support Vector Regression and Adaptive Neuro-Fuzzy Inference System-Based Evolutionary Algorithms," Sustainability, MDPI, vol. 14(15), pages 1-26, August.
    5. Mirzaei, Mohsen & Jafari, Ali & Gholamalifard, Mehdi & Azadi, Hossein & Shooshtari, Sharif Joorabian & Moghaddam, Saghi Movahhed & Gebrehiwot, Kindeya & Witlox, Frank, 2020. "Mitigating environmental risks: Modeling the interaction of water quality parameters and land use cover," Land Use Policy, Elsevier, vol. 95(C).
    6. Ahmet Cemkut Badem & Recep Yılmaz & Muhammet Raşit Cesur & Elif Cesur, 2024. "Advanced Predictive Modeling for Dam Occupancy Using Historical and Meteorological Data," Sustainability, MDPI, vol. 16(17), pages 1-18, September.
    7. Manish Kumar & Anuradha Kumari & Daniel Prakash Kushwaha & Pravendra Kumar & Anurag Malik & Rawshan Ali & Alban Kuriqi, 2020. "Estimation of Daily Stage–Discharge Relationship by Using Data-Driven Techniques of a Perennial River, India," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    8. Michelle Sapitang & Wanie M. Ridwan & Khairul Faizal Kushiar & Ali Najah Ahmed & Ahmed El-Shafie, 2020. "Machine Learning Application in Reservoir Water Level Forecasting for Sustainable Hydropower Generation Strategy," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
    9. Onur Genç & Ali Dağ, 2016. "A machine learning-based approach to predict the velocity profiles in small streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 43-61, January.
    10. Jhih-Huang Wang & Gwo-Fong Lin & Ming-Jui Chang & I-Hang Huang & Yu-Ren Chen, 2019. "Real-Time Water-Level Forecasting Using Dilated Causal Convolutional Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3759-3780, September.
    11. Shuheng Wang & Guohao Li & Yifan Bao, 2018. "A novel improved fuzzy support vector machine based stock price trend forecast model," Papers 1801.00681, arXiv.org.
    12. Sina Paryani & Mojgan Bordbar & Changhyun Jun & Mahdi Panahi & Sayed M. Bateni & Christopher M. U. Neale & Hamidreza Moeini & Saro Lee, 2023. "Hybrid-based approaches for the flood susceptibility prediction of Kermanshah province, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 837-868, March.
    13. Sri Lakshmi Sesha Vani Jayanthi & Venkata Reddy Keesara & Venkataramana Sridhar, 2022. "Prediction of Future Lake Water Availability Using SWAT and Support Vector Regression (SVR)," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    14. Vivien Lai & Ali Najah Ahmed & M.A. Malek & Haitham Abdulmohsin Afan & Rusul Khaleel Ibrahim & Ahmed El-Shafie & Amr El-Shafie, 2019. "Modeling the Nonlinearity of Sea Level Oscillations in the Malaysian Coastal Areas Using Machine Learning Algorithms," Sustainability, MDPI, vol. 11(17), pages 1-26, August.
    15. Isa Ebtehaj & Hossein Bonakdari, 2014. "Performance Evaluation of Adaptive Neural Fuzzy Inference System for Sediment Transport in Sewers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4765-4779, October.
    16. Zhenzhu Meng & Yiren Wang & Sen Zheng & Xiao Wang & Dan Liu & Jinxin Zhang & Yiting Shao, 2024. "Abnormal Monitoring Data Detection Based on Matrix Manipulation and the Cuckoo Search Algorithm," Mathematics, MDPI, vol. 12(9), pages 1-18, April.
    17. Yashon O. Ouma & Ditiro B. Moalafhi & George Anderson & Boipuso Nkwae & Phillimon Odirile & Bhagabat P. Parida & Jiaguo Qi, 2022. "Dam Water Level Prediction Using Vector AutoRegression, Random Forest Regression and MLP-ANN Models Based on Land-Use and Climate Factors," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    18. Mohammed Falah Allawi & Ahmed El-Shafie, 2016. "Utilizing RBF-NN and ANFIS Methods for Multi-Lead ahead Prediction Model of Evaporation from Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4773-4788, October.
    19. Yicheng Gong & Yongxiang Zhang & Shuangshuang Lan & Huan Wang, 2016. "A Comparative Study of Artificial Neural Networks, Support Vector Machines and Adaptive Neuro Fuzzy Inference System for Forecasting Groundwater Levels near Lake Okeechobee, Florida," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 375-391, January.
    20. Onur Genç & Ali Dağ, 2016. "A machine learning-based approach to predict the velocity profiles in small streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 43-61, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1832-:d:231128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.