IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v95y2020ics0264837718315655.html
   My bibliography  Save this article

Mitigating environmental risks: Modeling the interaction of water quality parameters and land use cover

Author

Listed:
  • Mirzaei, Mohsen
  • Jafari, Ali
  • Gholamalifard, Mehdi
  • Azadi, Hossein
  • Shooshtari, Sharif Joorabian
  • Moghaddam, Saghi Movahhed
  • Gebrehiwot, Kindeya
  • Witlox, Frank

Abstract

Understanding the relationship between rivers water quality (RWQ) and landscape metrics (LMs) is valuable for developing sustainable watershed management practices and pollution/environmental risk mitigation. To do so, the current study aimed to explore the relationship between RWQ and LMs by assessing 74 sub-basins within 2 million ha in Northern Iran. Principal component analyses were used to identify principal water quality parameters. Considering the effect of composition and configuration of the Land Use/Land Cover (LULC) on pollution loads, statistical models revealed that by increasing the mean of the Fractal Dimension Index of agricultural lands, the nitrate loads will increase. The results of this study can be especially used in the environmental impact/risk assessment of new industrial and residential applications. Also, the findings of the current study could provide a perfect source for calculations and choosing the best policy making decisions.

Suggested Citation

  • Mirzaei, Mohsen & Jafari, Ali & Gholamalifard, Mehdi & Azadi, Hossein & Shooshtari, Sharif Joorabian & Moghaddam, Saghi Movahhed & Gebrehiwot, Kindeya & Witlox, Frank, 2020. "Mitigating environmental risks: Modeling the interaction of water quality parameters and land use cover," Land Use Policy, Elsevier, vol. 95(C).
  • Handle: RePEc:eee:lauspo:v:95:y:2020:i:c:s0264837718315655
    DOI: 10.1016/j.landusepol.2018.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837718315655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2018.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iman Fatehi & Bahman Amiri & Afshin Alizadeh & Jan Adamowski, 2015. "Modeling the Relationship between Catchment Attributes and In-stream Water Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5055-5072, November.
    2. Chamara P. Liyanage & Koichi Yamada, 2017. "Impact of Population Growth on the Water Quality of Natural Water Bodies," Sustainability, MDPI, vol. 9(8), pages 1-14, August.
    3. Azam Haidary & Bahman Amiri & Jan Adamowski & Nicola Fohrer & Kaneyuki Nakane, 2013. "Assessing the Impacts of Four Land Use Types on the Water Quality of Wetlands in Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2217-2229, May.
    4. Afiq Hipni & Ahmed El-shafie & Ali Najah & Othman Karim & Aini Hussain & Muhammad Mukhlisin, 2013. "Erratum to: Daily Forecasting of Dam Water Levels: Comparing a Support Vector Machine (SVM) Model With Adaptive Neuro Fuzzy Inference System (ANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4113-4113, September.
    5. Afiq Hipni & Ahmed El-shafie & Ali Najah & Othman Karim & Aini Hussain & Muhammad Mukhlisin, 2013. "Daily Forecasting of Dam Water Levels: Comparing a Support Vector Machine (SVM) Model With Adaptive Neuro Fuzzy Inference System (ANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3803-3823, August.
    6. Ciobanu Dumitru & Vasilescu Maria, 2013. "Advantages and Disadvantages of Using Neural Networks for Predictions," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 444-449, May.
    7. Bahman Amiri & Kaneyuki Nakane, 2009. "Modeling the Linkage Between River Water Quality and Landscape Metrics in the Chugoku District of Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 931-956, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azadi, Hossein & Petrescu, Dacinia Crina & Petrescu-Mag, Ruxandra Malina & Ozunu, Alexandru, 2020. "Special issue: Environmental risk mitigation for sustainable land use development," Land Use Policy, Elsevier, vol. 95(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manish Kumar & Anuradha Kumari & Daniel Prakash Kushwaha & Pravendra Kumar & Anurag Malik & Rawshan Ali & Alban Kuriqi, 2020. "Estimation of Daily Stage–Discharge Relationship by Using Data-Driven Techniques of a Perennial River, India," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    2. Iman Fatehi & Bahman Amiri & Afshin Alizadeh & Jan Adamowski, 2015. "Modeling the Relationship between Catchment Attributes and In-stream Water Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5055-5072, November.
    3. Onur Genç & Ali Dağ, 2016. "A machine learning-based approach to predict the velocity profiles in small streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 43-61, January.
    4. Mehdi Aalipour & Naicheng Wu & Nicola Fohrer & Yusef Kianpoor Kalkhajeh & Bahman Jabbarian Amiri, 2023. "Examining the Influence of Landscape Patch Shapes on River Water Quality," Land, MDPI, vol. 12(5), pages 1-15, May.
    5. Bahman Jabbarian Amiri & Gao Junfeng & Nicola Fohrer & Felix Mueller & Jan Adamowski, 2018. "Regionalizing Flood Magnitudes using Landscape Structural Patterns of Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2385-2403, May.
    6. Yashon O. Ouma & Ditiro B. Moalafhi & George Anderson & Boipuso Nkwae & Phillimon Odirile & Bhagabat P. Parida & Jiaguo Qi, 2022. "Dam Water Level Prediction Using Vector AutoRegression, Random Forest Regression and MLP-ANN Models Based on Land-Use and Climate Factors," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    7. Mohammed Falah Allawi & Ahmed El-Shafie, 2016. "Utilizing RBF-NN and ANFIS Methods for Multi-Lead ahead Prediction Model of Evaporation from Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4773-4788, October.
    8. Onur Genç & Ali Dağ, 2016. "A machine learning-based approach to predict the velocity profiles in small streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 43-61, January.
    9. Raúl Parada & Jordi Font & Jordi Casas-Roma, 2019. "Predicting Energy Generation Using Forecasting Techniques in Catalan Reservoirs," Energies, MDPI, vol. 12(10), pages 1-21, May.
    10. Yicheng Gong & Yongxiang Zhang & Shuangshuang Lan & Huan Wang, 2016. "A Comparative Study of Artificial Neural Networks, Support Vector Machines and Adaptive Neuro Fuzzy Inference System for Forecasting Groundwater Levels near Lake Okeechobee, Florida," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 375-391, January.
    11. Zhang, Zixiong & Gong, Yicheng & Wang, Zhongjing, 2018. "Accessible remote sensing data based reference evapotranspiration estimation modelling," Agricultural Water Management, Elsevier, vol. 210(C), pages 59-69.
    12. Ali Nouh Mabdeh & A’kif Al-Fugara & Khaled Mohamed Khedher & Muhammed Mabdeh & Abdel Rahman Al-Shabeeb & Rida Al-Adamat, 2022. "Forest Fire Susceptibility Assessment and Mapping Using Support Vector Regression and Adaptive Neuro-Fuzzy Inference System-Based Evolutionary Algorithms," Sustainability, MDPI, vol. 14(15), pages 1-26, August.
    13. Ahmet Cemkut Badem & Recep Yılmaz & Muhammet Raşit Cesur & Elif Cesur, 2024. "Advanced Predictive Modeling for Dam Occupancy Using Historical and Meteorological Data," Sustainability, MDPI, vol. 16(17), pages 1-18, September.
    14. Michelle Sapitang & Wanie M. Ridwan & Khairul Faizal Kushiar & Ali Najah Ahmed & Ahmed El-Shafie, 2020. "Machine Learning Application in Reservoir Water Level Forecasting for Sustainable Hydropower Generation Strategy," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
    15. Jhih-Huang Wang & Gwo-Fong Lin & Ming-Jui Chang & I-Hang Huang & Yu-Ren Chen, 2019. "Real-Time Water-Level Forecasting Using Dilated Causal Convolutional Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3759-3780, September.
    16. Shuheng Wang & Guohao Li & Yifan Bao, 2018. "A novel improved fuzzy support vector machine based stock price trend forecast model," Papers 1801.00681, arXiv.org.
    17. Sina Paryani & Mojgan Bordbar & Changhyun Jun & Mahdi Panahi & Sayed M. Bateni & Christopher M. U. Neale & Hamidreza Moeini & Saro Lee, 2023. "Hybrid-based approaches for the flood susceptibility prediction of Kermanshah province, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 837-868, March.
    18. Sri Lakshmi Sesha Vani Jayanthi & Venkata Reddy Keesara & Venkataramana Sridhar, 2022. "Prediction of Future Lake Water Availability Using SWAT and Support Vector Regression (SVR)," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    19. Vivien Lai & Ali Najah Ahmed & M.A. Malek & Haitham Abdulmohsin Afan & Rusul Khaleel Ibrahim & Ahmed El-Shafie & Amr El-Shafie, 2019. "Modeling the Nonlinearity of Sea Level Oscillations in the Malaysian Coastal Areas Using Machine Learning Algorithms," Sustainability, MDPI, vol. 11(17), pages 1-26, August.
    20. Ahmed El-Shafie & Amr El-Shafie & Muhammad Mukhlisin, 2014. "New Approach: Integrated Risk-Stochastic Dynamic Model for Dam and Reservoir Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2093-2107, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:95:y:2020:i:c:s0264837718315655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.