IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i7d10.1007_s11269-019-02255-2.html
   My bibliography  Save this article

Lake Level Prediction using Feed Forward and Recurrent Neural Networks

Author

Listed:
  • Bahrudin Hrnjica

    (University of Bihac)

  • Ognjen Bonacci

    (University of Split)

Abstract

The protection of high quality fresh water in times of global climate changes is of tremendous importance since it is the key factor of local demographic and economic development. One such fresh water source is Vrana Lake, located on the completely karstified Island of Cres in Croatia. Over the last few decades a severe and dangerous decrease of the lake level has been documented. In order to develop a reliable lake level prediction, the application of the artificial neural networks (ANN) was used for the first time. The paper proposes time-series forecasting models based on the monthly measurements of the lake level during the last 38 years, capable to predict 6 or 12 months ahead. In order to gain the best possible model performance, the forecasting models were built using two types of ANN: the Long-Short Term Memory (LSTM) recurrent neural network (RNN), and the feed forward neural network (FFNN). Instead of classic lagged data set, the proposed models were trained with the set of sequences with different length created from the time series data. The models were trained with the same set of the training parameters in order to establish the same conditions for the performance analysis. Based on root mean squared error (RMSE) and correlation coefficient (R) the performance analysis shown that both model types can achieve satisfactory results. The analysis also revealed that regardless of the model types, they outperform classic ANN models based on datasets with fixed number of features and one month the prediction period. Analysis also revealed that the proposed models outperform classic time series forecasting models based on ARIMA and other similar methods .

Suggested Citation

  • Bahrudin Hrnjica & Ognjen Bonacci, 2019. "Lake Level Prediction using Feed Forward and Recurrent Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2471-2484, May.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:7:d:10.1007_s11269-019-02255-2
    DOI: 10.1007/s11269-019-02255-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02255-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02255-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Qing & Ewing, Bradley T. & Thompson, Mark A., 2012. "Forecasting wind speed with recurrent neural networks," European Journal of Operational Research, Elsevier, vol. 221(1), pages 148-154.
    2. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    3. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2016. "Day-ahead electricity price forecasting via the application of artificial neural network based models," Applied Energy, Elsevier, vol. 172(C), pages 132-151.
    4. Yicheng Gong & Yongxiang Zhang & Shuangshuang Lan & Huan Wang, 2016. "A Comparative Study of Artificial Neural Networks, Support Vector Machines and Adaptive Neuro Fuzzy Inference System for Forecasting Groundwater Levels near Lake Okeechobee, Florida," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 375-391, January.
    5. Yicheng Gong & Yongxiang Zhang & Shuangshuang Lan & Huan Wang, 2016. "A Comparative Study of Artificial Neural Networks, Support Vector Machines and Adaptive Neuro Fuzzy Inference System for Forecasting Groundwater Levels near Lake Okeechobee, Florida," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 375-391, January.
    6. Fereshteh Modaresi & Shahab Araghinejad & Kumars Ebrahimi, 2018. "A Comparative Assessment of Artificial Neural Network, Generalized Regression Neural Network, Least-Square Support Vector Regression, and K-Nearest Neighbor Regression for Monthly Streamflow Forecasti," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 243-258, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kagiso Samuel More & Christian Wolkersdorfer, 2022. "Predicting and Forecasting Mine Water Parameters Using a Hybrid Intelligent System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2813-2826, June.
    2. Serkan Ozdemir & Sevgi Ozkan Yildirim, 2023. "Prediction of Water Level in Lakes by RNN-Based Deep Learning Algorithms to Preserve Sustainability in Changing Climate and Relationship to Microcystin," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
    3. Ervin Shan Khai Tiu & Yuk Feng Huang & Jing Lin Ng & Nouar AlDahoul & Ali Najah Ahmed & Ahmed Elshafie, 2022. "An evaluation of various data pre-processing techniques with machine learning models for water level prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 121-153, January.
    4. Ly, Sel & Xie, Jiahang & Wolter, Franz-Erich & Nguyen, Hung D. & Weng, Yu, 2023. "T-shape data and probabilistic remaining useful life prediction for Li-ion batteries using multiple non-crossing quantile long short-term memory," Applied Energy, Elsevier, vol. 349(C).
    5. Željka Brkić & Mladen Kuhta, 2022. "Lake Level Evolution of the Largest Freshwater Lake on the Mediterranean Islands through Drought Analysis and Machine Learning," Sustainability, MDPI, vol. 14(16), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kostić, Srđan & Stojković, Milan & Guranov, Iva & Vasović, Nebojša, 2019. "Revealing the background of groundwater level dynamics: Contributing factors, complex modeling and engineering applications," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 408-421.
    2. Kusum Pandey & Shiv Kumar & Anurag Malik & Alban Kuriqi, 2020. "Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal Groundwater Table Depth Prediction in Uttar Pradesh, India," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    3. Dilip Kumar Roy & Sujit Kumar Biswas & Kowshik Kumar Saha & Khandakar Faisal Ibn Murad, 2021. "Groundwater Level Forecast Via a Discrete Space-State Modelling Approach as a Surrogate to Complex Groundwater Simulation Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1653-1672, April.
    4. Habibeh Sharifi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2021. "Evaluating the Performance of Agricultural Water Distribution Systems Using FIS, ANN and ANFIS Intelligent Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1797-1816, April.
    5. Ao, Chang & Zeng, Wenzhi & Wu, Lifeng & Qian, Long & Srivastava, Amit Kumar & Gaiser, Thomas, 2021. "Time-delayed machine learning models for estimating groundwater depth in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Dilip Kumar Roy & Bithin Datta, 2017. "Fuzzy C-Mean Clustering Based Inference System for Saltwater Intrusion Processes Prediction in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 355-376, January.
    7. Marta Matyjaszek & Gregorio Fidalgo Valverde & Alicja Krzemień & Krzysztof Wodarski & Pedro Riesgo Fernández, 2020. "Optimizing Predictor Variables in Artificial Neural Networks When Forecasting Raw Material Prices for Energy Production," Energies, MDPI, vol. 13(8), pages 1-15, April.
    8. Sangita Dey & Arabin Kumar Dey & Rajesh Kumar Mall, 2021. "Modeling Long-term Groundwater Levels By Exploring Deep Bidirectional Long Short-Term Memory using Hydro-climatic Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3395-3410, August.
    9. Peng, Lu & Liu, Shan & Liu, Rui & Wang, Lin, 2018. "Effective long short-term memory with differential evolution algorithm for electricity price prediction," Energy, Elsevier, vol. 162(C), pages 1301-1314.
    10. Indrajit Mandal & Swades Pal, 2022. "Assessing the impact of ecological insecurity on ecosystem service value in stone quarrying and crushing dominated areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11760-11784, October.
    11. Luis Gonzaga Baca Ruiz & Manuel Pegalajar Cuéllar & Miguel Delgado Calvo-Flores & María Del Carmen Pegalajar Jiménez, 2016. "An Application of Non-Linear Autoregressive Neural Networks to Predict Energy Consumption in Public Buildings," Energies, MDPI, vol. 9(9), pages 1-21, August.
    12. Shahab Araghinejad & Nima Fayaz & Seyed-Mohammad Hosseini-Moghari, 2018. "Development of a Hybrid Data Driven Model for Hydrological Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3737-3750, September.
    13. Fan, Junliang & Ma, Xin & Wu, Lifeng & Zhang, Fucang & Yu, Xiang & Zeng, Wenzhi, 2019. "Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data," Agricultural Water Management, Elsevier, vol. 225(C).
    14. Zhang, Zixiong & Gong, Yicheng & Wang, Zhongjing, 2018. "Accessible remote sensing data based reference evapotranspiration estimation modelling," Agricultural Water Management, Elsevier, vol. 210(C), pages 59-69.
    15. Saeideh Samani & Meysam Vadiati & Farahnaz Azizi & Efat Zamani & Ozgur Kisi, 2022. "Groundwater Level Simulation Using Soft Computing Methods with Emphasis on Major Meteorological Components," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3627-3647, August.
    16. Sandra M. Guzman & Joel O. Paz & Mary Love M. Tagert, 2017. "The Use of NARX Neural Networks to Forecast Daily Groundwater Levels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1591-1603, March.
    17. Wen-Ping Tsai & Yen-Ming Chiang & Jun-Lin Huang & Fi-John Chang, 2016. "Exploring the Mechanism of Surface and Ground Water through Data-Driven Techniques with Sensitivity Analysis for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4789-4806, October.
    18. Hsi-Ting Fang & Bing-Chen Jhong & Yih-Chi Tan & Kai-Yuan Ke & Mo-Hsiung Chuang, 2019. "A Two-Stage Approach Integrating SOM- and MOGA-SVM-Based Algorithms to Forecast Spatial-temporal Groundwater Level with Meteorological Factors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 797-818, January.
    19. Hye-Suk Yi & Sangyoung Park & Kwang-Guk An & Keun-Chang Kwak, 2018. "Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
    20. Fadaki, Masih & Asadikia, Atie, 2024. "Augmenting Monte Carlo Tree Search for managing service level agreements," International Journal of Production Economics, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:7:d:10.1007_s11269-019-02255-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.