IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i2p289-d198716.html
   My bibliography  Save this article

Prediction of Hydropower Generation Using Grey Wolf Optimization Adaptive Neuro-Fuzzy Inference System

Author

Listed:
  • Majid Dehghani

    (Technical and Engineering Department, Faculty of Civil Engineering, Vali-e-Asr University of Rafsanjan, P.O. Box 518, Rafsanjan 7718897111, Iran)

  • Hossein Riahi-Madvar

    (College of Agriculture, Vali-e-Asr University of Rafsanjan, P.O. Box 518, Rafsanjan 7718897111, Iran)

  • Farhad Hooshyaripor

    (Technical and Engineering Department, Science and Research, Branch, Islamic Azad University, Tehran 1477893855, Iran)

  • Amir Mosavi

    (Institute of Automation, Kando Kalman Faculty of Electrical Engineering, Obuda University, 1034 Budapest, Hungary
    School of the Built Environment, Oxford Brookes University, Oxford OX3 0BP, UK)

  • Shahaboddin Shamshirband

    (Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
    Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam)

  • Edmundas Kazimieras Zavadskas

    (Institute of Sustainable Construction, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania)

  • Kwok-wing Chau

    (Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China)

Abstract

Hydropower is among the cleanest sources of energy. However, the rate of hydropower generation is profoundly affected by the inflow to the dam reservoirs. In this study, the Grey wolf optimization (GWO) method coupled with an adaptive neuro-fuzzy inference system (ANFIS) to forecast the hydropower generation. For this purpose, the Dez basin average of rainfall was calculated using Thiessen polygons. Twenty input combinations, including the inflow to the dam, the rainfall and the hydropower in the previous months were used, while the output in all the scenarios was one month of hydropower generation. Then, the coupled model was used to forecast the hydropower generation. Results indicated that the method was promising. GWO-ANFIS was capable of predicting the hydropower generation satisfactorily, while the ANFIS failed in nine input-output combinations.

Suggested Citation

  • Majid Dehghani & Hossein Riahi-Madvar & Farhad Hooshyaripor & Amir Mosavi & Shahaboddin Shamshirband & Edmundas Kazimieras Zavadskas & Kwok-wing Chau, 2019. "Prediction of Hydropower Generation Using Grey Wolf Optimization Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 12(2), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:289-:d:198716
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/2/289/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/2/289/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Behrooz Keshtegar & Mohammed Falah Allawi & Haitham Abdulmohsin Afan & Ahmed El-Shafie, 2016. "Optimized River Stream-Flow Forecasting Model Utilizing High-Order Response Surface Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3899-3914, September.
    2. Ozgur Kisi & Jalal Shiri, 2011. "Precipitation Forecasting Using Wavelet-Genetic Programming and Wavelet-Neuro-Fuzzy Conjunction Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3135-3152, October.
    3. Yong Peng & Wei Xu & Bingbing Liu, 2017. "Considering precipitation forecasts for real-time decision-making in hydropower operations," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 33(6), pages 987-1002, November.
    4. Jiang, Zhiqiang & Li, Rongbo & Li, Anqiang & Ji, Changming, 2018. "Runoff forecast uncertainty considered load adjustment model of cascade hydropower stations and its application," Energy, Elsevier, vol. 158(C), pages 693-708.
    5. Guolei Tang & Huicheng Zhou & Ningning Li & Feng Wang & Yajun Wang & Deping Jian, 2010. "Value of Medium-range Precipitation Forecasts in Inflow Prediction and Hydropower Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2721-2742, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maryam Shafaei & Ozgur Kisi, 2016. "Lake Level Forecasting Using Wavelet-SVR, Wavelet-ANFIS and Wavelet-ARMA Conjunction Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 79-97, January.
    2. Natalia Walczak & Zbigniew Walczak & Tomasz Tymiński, 2022. "Laboratory Research on Hydraulic Losses on SHP Inlet Channel Trash Racks," Energies, MDPI, vol. 15(20), pages 1-18, October.
    3. Lei, Kaixuan & Chang, Jianxia & Long, Ruihao & Wang, Yimin & Zhang, Hongxue, 2022. "Cascade hydropower station risk operation under the condition of inflow uncertainty," Energy, Elsevier, vol. 244(PA).
    4. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Zhao, Zhipeng & Lu, Jia, 2022. "Wasserstein metric-based two-stage distributionally robust optimization model for optimal daily peak shaving dispatch of cascade hydroplants under renewable energy uncertainties," Energy, Elsevier, vol. 260(C).
    5. Qiao-feng Tan & Guo-hua Fang & Xin Wen & Xiao-hui Lei & Xu Wang & Chao Wang & Yi Ji, 2020. "Bayesian Stochastic Dynamic Programming for Hydropower Generation Operation Based on Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1589-1607, March.
    6. Liu, Jia & Zeng, Peter Pingliang & Xing, Hao & Li, Yalou & Wu, Qiuwei, 2020. "Hierarchical duality-based planning of transmission networks coordinating active distribution network operation," Energy, Elsevier, vol. 213(C).
    7. Wei Xu & Xiaoli Zhang & Anbang Peng & Yue Liang, 2020. "Deep Reinforcement Learning for Cascaded Hydropower Reservoirs Considering Inflow Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3003-3018, July.
    8. Gong, Bin & An, Aimin & Shi, Yaoke & Guan, Haijiao & Jia, Wenchao & Yang, Fazhi, 2024. "An interpretable hybrid spatiotemporal fusion method for ultra-short-term photovoltaic power prediction," Energy, Elsevier, vol. 308(C).
    9. He, Feifei & Zhou, Jianzhong & Mo, Li & Feng, Kuaile & Liu, Guangbiao & He, Zhongzheng, 2020. "Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest," Applied Energy, Elsevier, vol. 262(C).
    10. Yongqi Liu & Lei Ye & Hui Qin & Shuo Ouyang & Zhendong Zhang & Jianzhong Zhou, 2019. "Middle and Long-Term Runoff Probabilistic Forecasting Based on Gaussian Mixture Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1785-1799, March.
    11. Keshtegar, Behrooz & Mert, Cihan & Kisi, Ozgur, 2018. "Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 330-341.
    12. Lu, Di & Wang, Bende & Wang, Yaodong & Zhou, Huicheng & Liang, Qiuhua & Peng, Yong & Roskilly, Tony, 2015. "Optimal operation of cascade hydropower stations using hydrogen as storage medium," Applied Energy, Elsevier, vol. 137(C), pages 56-63.
    13. E. Fallah-Mehdipour & O. Bozorg Haddad & H. Orouji & M. Mariño, 2013. "Application of Genetic Programming in Stage Hydrograph Routing of Open Channels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3261-3272, July.
    14. Liping Li & Pan Liu & David Rheinheimer & Chao Deng & Yanlai Zhou, 2014. "Identifying Explicit Formulation of Operating Rules for Multi-Reservoir Systems Using Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1545-1565, April.
    15. Seydou Traore & Aytac Guven, 2012. "Regional-Specific Numerical Models of Evapotranspiration Using Gene-Expression Programming Interface in Sahel," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4367-4380, December.
    16. Yang, Lichao & Cai, Zuansi & Li, Cai & He, Qingcheng & Ma, Yan & Guo, Chaobin, 2020. "Numerical investigation of cycle performance in compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 269(C).
    17. Asim Jahangir Khan & Manfred Koch & Adnan Ahmad Tahir, 2020. "Impacts of Climate Change on the Water Availability, Seasonality and Extremes in the Upper Indus Basin (UIB)," Sustainability, MDPI, vol. 12(4), pages 1-27, February.
    18. Pao-Shan Yu & Tao-Chang Yang & Chen-Min Kuo & Yi-Tai Wang, 2014. "A Stochastic Approach for Seasonal Water-Shortage Probability Forecasting Based on Seasonal Weather Outlook," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3905-3920, September.
    19. Yueqiu Wu & Liping Wang & Yi Wang & Yanke Zhang & Jiajie Wu & Qiumei Ma & Xiaoqing Liang & Bin He, 2021. "Risk Analysis for Short-Term Operation of the Power Generation in Cascade Reservoirs Considering Multivariate Reservoir Inflow Forecast Errors," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    20. Oke, Doris & Mukherjee, Rajib & Sengupta, Debalina & Majozi, Thokozani & El-Halwagi, Mahmoud, 2020. "On the optimization of water-energy nexus in shale gas network under price uncertainties," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:289-:d:198716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.