IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i11d10.1007_s11269-016-1371-1.html
   My bibliography  Save this article

Penalty-Free Multi-Objective Evolutionary Approach to Optimization of Anytown Water Distribution Network

Author

Listed:
  • Calvin Siew

    (University of Strathclyde Glasgow)

  • Tiku T. Tanyimboh

    (University of Strathclyde Glasgow)

  • Alemtsehay G. Seyoum

    (University of Strathclyde Glasgow)

Abstract

This paper describes the development and application of a new multi-objective evolutionary optimization approach for the design and upgrading of water distribution systems with multiple pumps and service reservoirs. The optimization model employs a pressure-driven analysis simulator that accounts for the minimum node pressure constraints and conservation of mass and energy. Pump scheduling, tank siting and tank design are integrated seamlessly in the optimization without introducing additional heuristic procedures. The computational solution of the optimization problem is entirely penalty-free, thanks to pressure-driven analysis and the inclusion of explicit criteria for tank depletion and replenishment. The model was applied to the Anytown network that is a benchmark optimization problem. Many new solutions were achieved that are cheaper and offer superior performance compared to previous solutions in the literature. Detailed and extensive simulations of the solutions achieved were carried out. Spatial and temporal variations in water quality were investigated by simulating the chlorine residual and disinfection by-products in addition to water age. The hydraulic requirements were satisfied; efficiency of pumps was consistently high; effective operation of the new and existing tanks was achieved; water quality was improved; and overall computational efficiency was high. The formulation is entirely generic.

Suggested Citation

  • Calvin Siew & Tiku T. Tanyimboh & Alemtsehay G. Seyoum, 2016. "Penalty-Free Multi-Objective Evolutionary Approach to Optimization of Anytown Water Distribution Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3671-3688, September.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:11:d:10.1007_s11269-016-1371-1
    DOI: 10.1007/s11269-016-1371-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1371-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1371-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salah Saleh & Tiku T. Tanyimboh, 2016. "Multi-Directional Maximum-Entropy Approach to the Evolutionary Design Optimization of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1885-1901, April.
    2. Mohd Abdy Sayyed & Rajesh Gupta & Tiku Tanyimboh, 2015. "Noniterative Application of EPANET for Pressure Dependent Modelling Of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3227-3242, July.
    3. Salah Saleh & Tiku Tanyimboh, 2013. "Coupled Topology and Pipe Size Optimization of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4795-4814, November.
    4. Nikolai Gorev & Inna Kodzhespirova, 2013. "Noniterative Implementation of Pressure-Dependent Demands Using the Hydraulic Analysis Engine of EPANET 2," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3623-3630, August.
    5. Ioannis Kougias & Nicolaos Theodossiou, 2013. "Multiobjective Pump Scheduling Optimization Using Harmony Search Algorithm (HSA) and Polyphonic HSA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1249-1261, March.
    6. Salah Saleh & Tiku Tanyimboh, 2014. "Optimal Design of Water Distribution Systems Based on Entropy and Topology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3555-3575, September.
    7. Carlo Ciaponi & Luigi Franchioli & Enrico Murari & Sergio Papiri, 2015. "Procedure for Defining a Pressure-Outflow Relationship Regarding Indoor Demands in Pressure-Driven Analysis of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 817-832, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiku T. Tanyimboh & Anna M. Czajkowska, 2021. "Entropy maximizing evolutionary design optimization of water distribution networks under multiple operating conditions," Environment Systems and Decisions, Springer, vol. 41(2), pages 267-285, June.
    2. Guohua Fang & Yuxue Guo & Xin Wen & Xiaomin Fu & Xiaohui Lei & Yu Tian & Ting Wang, 2018. "Multi-Objective Differential Evolution-Chaos Shuffled Frog Leaping Algorithm for Water Resources System Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 3835-3852, September.
    3. Meisam Shokoohi & Massoud Tabesh & Sara Nazif & Mehdi Dini, 2017. "Water Quality Based Multi-objective Optimal Design of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 93-108, January.
    4. Tiku T. Tanyimboh, 2017. "Informational Entropy: a Failure Tolerance and Reliability Surrogate for Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3189-3204, August.
    5. Alemtsehay G. Seyoum & Tiku T. Tanyimboh, 2017. "Integration of Hydraulic and Water Quality Modelling in Distribution Networks: EPANET-PMX," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4485-4503, November.
    6. Tiku T. Tanyimboh & Anna Czajkowska, 2018. "Self-Adaptive Solution-Space Reduction Algorithm for Multi-Objective Evolutionary Design Optimization of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3337-3352, August.
    7. Ruben Menke & Edo Abraham & Panos Parpas & Ivan Stoianov, 2016. "Exploring Optimal Pump Scheduling in Water Distribution Networks with Branch and Bound Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5333-5349, November.
    8. Amin Minaei & Adell Moradi Sabzkouhi & Ali Haghighi & Enrico Creaco, 2020. "Developments in Multi-Objective Dynamic Optimization Algorithm for Design of Water Distribution Mains," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2699-2716, July.
    9. Alemtsehay G. Seyoum & Tiku T. Tanyimboh, 2016. "Investigation into the Pressure-Driven Extension of the EPANET Hydraulic Simulation Model for Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5351-5367, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alemtsehay G. Seyoum & Tiku T. Tanyimboh, 2016. "Investigation into the Pressure-Driven Extension of the EPANET Hydraulic Simulation Model for Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5351-5367, November.
    2. Tiku T. Tanyimboh & Anna M. Czajkowska, 2021. "Entropy maximizing evolutionary design optimization of water distribution networks under multiple operating conditions," Environment Systems and Decisions, Springer, vol. 41(2), pages 267-285, June.
    3. Tiku T. Tanyimboh, 2017. "Informational Entropy: a Failure Tolerance and Reliability Surrogate for Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3189-3204, August.
    4. Salah Saleh & Tiku T. Tanyimboh, 2016. "Multi-Directional Maximum-Entropy Approach to the Evolutionary Design Optimization of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1885-1901, April.
    5. Tiku T. Tanyimboh & Calvin Siew & Salah Saleh & Anna Czajkowska, 2016. "Comparison of Surrogate Measures for the Reliability and Redundancy of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3535-3552, August.
    6. Salah Saleh & Tiku Tanyimboh, 2014. "Optimal Design of Water Distribution Systems Based on Entropy and Topology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3555-3575, September.
    7. Shweta Rathi & Rajesh Gupta & Swapnil Kamble & Aabha Sargaonkar, 2016. "Risk Based Analysis for Contamination Event Selection and Optimal Sensor Placement for Intermittent Water Distribution Network Security," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2671-2685, June.
    8. Upaka Rathnayake & Tiku Tanyimboh, 2015. "Evolutionary Multi-Objective Optimal Control of Combined Sewer Overflows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2715-2731, June.
    9. E. Pacchin & S. Alvisi & M. Franchini, 2017. "Analysis of Non-Iterative Methods and Proposal of a New One for Pressure-Driven Snapshot Simulations with EPANET," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 75-91, January.
    10. Mohd Abdy Sayyed & Rajesh Gupta & Tiku Tanyimboh, 2015. "Noniterative Application of EPANET for Pressure Dependent Modelling Of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3227-3242, July.
    11. K. S. Jinesh Babu, 2021. "Fictitious Component Free - Pressure Deficient Network Algorithm for Water Distribution Network with Variable Minimum and Required Pressure-Heads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2585-2600, June.
    12. P. Sivakumar & Nikolai B. Gorev & Rajesh Gupta & Tiku T. Tanyimboh & Inna F. Kodzhespirova & C. R. Suribabu, 2020. "Effects of Non-Zero Minimum Pressure Heads in Non-iterative Application of EPANET 2 in Pressure-Dependent Volume-Driven Analysis of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 5047-5059, December.
    13. Tiku T. Tanyimboh & Anna Czajkowska, 2018. "Self-Adaptive Solution-Space Reduction Algorithm for Multi-Objective Evolutionary Design Optimization of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3337-3352, August.
    14. B. Sriman Pankaj & M. Naveen Naidu & A. Vasan & Murari RR Varma, 2020. "Self-Adaptive Cuckoo Search Algorithm for Optimal Design of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3129-3146, August.
    15. Isabel Kaufmann Almeida & Aleska Kaufmann Almeida & Jorge Luiz Steffen & Teodorico Alves Sobrinho, 2016. "Model for Estimating the Time of Concentration in Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4083-4096, September.
    16. Alemtsehay G. Seyoum & Tiku T. Tanyimboh, 2017. "Integration of Hydraulic and Water Quality Modelling in Distribution Networks: EPANET-PMX," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4485-4503, November.
    17. Shiono, Naoshi & Suzuki, Hisatoshi & Saruwatari, Yasufumi, 2019. "A dynamic programming approach for the pipe network layout problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 52-61.
    18. Tao Bai & Lianzhou Wu & Jian-xia Chang & Qiang Huang, 2015. "Multi-Objective Optimal Operation Model of Cascade Reservoirs and Its Application on Water and Sediment Regulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2751-2770, June.
    19. Seon Woo Kim & Soon Ho Kwon & Donghwi Jung, 2022. "Development of a Multiobjective Automatic Parameter-Calibration Framework for Urban Drainage Systems," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    20. Oreste Fecarotta & Armando Carravetta & Maria Cristina Morani & Roberta Padulano, 2018. "Optimal Pump Scheduling for Urban Drainage under Variable Flow Conditions," Resources, MDPI, vol. 7(4), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:11:d:10.1007_s11269-016-1371-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.