IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i1d10.1007_s11269-023-03648-0.html
   My bibliography  Save this article

Design Optimization of Water Distribution Networks with Dynamic Search Space Reduction GA

Author

Listed:
  • Laxmi Gangwani

    (Shri Ramdeobaba College of Engineering and Management)

  • Shilpa Dongre

    (Visvesvaraya National Institute of Technology (VNIT))

  • Rajesh Gupta

    (Visvesvaraya National Institute of Technology (VNIT))

  • Mohd Abbas H. Abdy Sayyed

    (Indian Institute of Technology Bombay (IITB))

  • Tiku Tanyimboh

    (University of the Witwatersrand)

Abstract

Evolutionary algorithms (EAs) have been used extensively for the optimal design of water distribution networks (WDNs). There is evidence in the literature that search space reduction is highly effective. However, practical methods that do not introduce extra computational requirements are lacking. A dynamic search space reduction methodology is proposed to search the entire solution space without eliminating any part of the search space beforehand. The proposed methodology works on the information explored during the execution of the algorithm. Further, a self-adaptive penalty is suggested which is based on both flow and pressure deficits instead of only pressure deficit and is obtained using pressure dependent analysis. In this study, the methodology is demonstrated using a Genetic Algorithm (GA). The effectiveness of the methodology is demonstrated on the Ramnagar Network of Nagpur City, India and two benchmark problems from the literature. The proposed methodology resulted in a substantial reduction in the computational efforts and provided nine improved solutions as compared to the best solution available in the literature for one of the networks. The techniques proposed are generic and can be incorporated in other EAs.

Suggested Citation

  • Laxmi Gangwani & Shilpa Dongre & Rajesh Gupta & Mohd Abbas H. Abdy Sayyed & Tiku Tanyimboh, 2024. "Design Optimization of Water Distribution Networks with Dynamic Search Space Reduction GA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 63-79, January.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:1:d:10.1007_s11269-023-03648-0
    DOI: 10.1007/s11269-023-03648-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03648-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03648-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tiku T. Tanyimboh & Anna Czajkowska, 2018. "Self-Adaptive Solution-Space Reduction Algorithm for Multi-Objective Evolutionary Design Optimization of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3337-3352, August.
    2. Ali Haghighi & Hossein Samani & Zeinab Samani, 2011. "GA-ILP Method for Optimization of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(7), pages 1791-1808, May.
    3. Mohd Abdy Sayyed & Rajesh Gupta & Tiku Tanyimboh, 2015. "Noniterative Application of EPANET for Pressure Dependent Modelling Of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3227-3242, July.
    4. Priyanshu Jain & Ruchi Khare, 2021. "Application of Parameter-Less Rao Algorithm in Optimization of Water Distribution Networks Through Pressure-Driven Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4067-4084, September.
    5. Calvin Siew & Tiku Tanyimboh, 2012. "Penalty-Free Feasibility Boundary Convergent Multi-Objective Evolutionary Algorithm for the Optimization of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4485-4507, December.
    6. Calvin Siew & Tiku Tanyimboh & Alemtsehay Seyoum, 2014. "Assessment of Penalty-Free Multi-Objective Evolutionary Optimization Approach for the Design and Rehabilitation of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 373-389, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alemtsehay G. Seyoum & Tiku T. Tanyimboh, 2016. "Investigation into the Pressure-Driven Extension of the EPANET Hydraulic Simulation Model for Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5351-5367, November.
    2. M. Pasha & Kevin Lansey, 2014. "Strategies to Develop Warm Solutions for Real-Time Pump Scheduling for Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3975-3987, September.
    3. Tiku T. Tanyimboh & Anna M. Czajkowska, 2021. "Entropy maximizing evolutionary design optimization of water distribution networks under multiple operating conditions," Environment Systems and Decisions, Springer, vol. 41(2), pages 267-285, June.
    4. Euan Barlow & Tiku Tanyimboh, 2014. "Multiobjective Memetic Algorithm Applied to the Optimisation of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2229-2242, June.
    5. Tiku T. Tanyimboh & Anna M. Czajkowska, 2018. "Joint Entropy Based Multi-Objective Evolutionary Optimization of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2569-2584, June.
    6. Tiku T. Tanyimboh & Anna Czajkowska, 2018. "Self-Adaptive Solution-Space Reduction Algorithm for Multi-Objective Evolutionary Design Optimization of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3337-3352, August.
    7. B. Sriman Pankaj & M. Naveen Naidu & A. Vasan & Murari RR Varma, 2020. "Self-Adaptive Cuckoo Search Algorithm for Optimal Design of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3129-3146, August.
    8. Tiku T. Tanyimboh, 2017. "Informational Entropy: a Failure Tolerance and Reliability Surrogate for Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3189-3204, August.
    9. Alemtsehay G. Seyoum & Tiku T. Tanyimboh, 2017. "Integration of Hydraulic and Water Quality Modelling in Distribution Networks: EPANET-PMX," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4485-4503, November.
    10. M. Fontana & D. Morais, 2013. "Using Promethee V to Select Alternatives so as to Rehabilitate Water Supply Network with Detected Leaks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4021-4037, September.
    11. Jun Zhao & Juliang Jin & Jiezhong Zhu & Jinchao Xu & Qingfeng Hang & Yaqian Chen & Donghao Han, 2016. "Water Resources Risk Assessment Model based on the Subjective and Objective Combination Weighting Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3027-3042, July.
    12. Jiang, J. & Liu, X., 2018. "Multi-objective Stackelberg game model for water supply networks against interdictions with incomplete information," European Journal of Operational Research, Elsevier, vol. 266(3), pages 920-933.
    13. Hossein Fallah & Ozgur Kisi & Sungwon Kim & Mohammad Rezaie-Balf, 2019. "A New Optimization Approach for the Least-Cost Design of Water Distribution Networks: Improved Crow Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3595-3613, August.
    14. Hui Zhang & Xin Cheng & Tinglin Huang & Haibing Cong & Jinlan Xu, 2017. "Hydraulic Analysis of Water Distribution Systems Based on Fixed Point Iteration Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1605-1618, March.
    15. Fernández García, I. & Creaco, E. & Rodríguez Díaz, J.A. & Montesinos, P. & Camacho Poyato, E. & Savic, D., 2016. "Rehabilitating pressurized irrigation networks for an increased energy efficiency," Agricultural Water Management, Elsevier, vol. 164(P2), pages 212-222.
    16. J. Yazdi, 2016. "Decomposition based Multi Objective Evolutionary Algorithms for Design of Large-Scale Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2749-2766, June.
    17. Calvin Siew & Tiku T. Tanyimboh & Alemtsehay G. Seyoum, 2016. "Penalty-Free Multi-Objective Evolutionary Approach to Optimization of Anytown Water Distribution Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3671-3688, September.
    18. Salah Saleh & Tiku Tanyimboh, 2014. "Optimal Design of Water Distribution Systems Based on Entropy and Topology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3555-3575, September.
    19. Ali Haghighi & Amin Bakhshipour, 2012. "Optimization of Sewer Networks Using an Adaptive Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3441-3456, September.
    20. Shweta Rathi & Rajesh Gupta & Swapnil Kamble & Aabha Sargaonkar, 2016. "Risk Based Analysis for Contamination Event Selection and Optimal Sensor Placement for Intermittent Water Distribution Network Security," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2671-2685, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:1:d:10.1007_s11269-023-03648-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.