IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v2y2020i4p22-428d428737.html
   My bibliography  Save this article

A Hybrid Method for the Run-Of-The-River Hydroelectric Power Plant Energy Forecast: HYPE Hydrological Model and Neural Network

Author

Listed:
  • Emanuele Ogliari

    (Dipartimento di Energia, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
    These authors contributed equally to this work.)

  • Alfredo Nespoli

    (Dipartimento di Energia, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
    These authors contributed equally to this work.)

  • Marco Mussetta

    (Dipartimento di Energia, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
    These authors contributed equally to this work.)

  • Silvia Pretto

    (Dipartimento di Energia, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
    These authors contributed equally to this work.)

  • Andrea Zimbardo

    (Dipartimento di Energia, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
    These authors contributed equally to this work.)

  • Nicholas Bonfanti

    (Milano Multiphysics S.r.l.s, Polihub, via Durando 39, 20158 Milano, Italy)

  • Manuele Aufiero

    (Milano Multiphysics S.r.l.s, Polihub, via Durando 39, 20158 Milano, Italy)

Abstract

The increasing penetration of non-programmable renewable energy sources (RES) is enforcing the need for accurate power production forecasts. In the category of hydroelectric plants, Run of the River (RoR) plants belong to the class of non-programmable RES. Data-driven models are nowadays the most widely adopted methodologies in hydropower forecast. Among all, the Artificial Neural Network (ANN) proved to be highly successful in production forecast. Widely adopted and equally important for hydropower generation forecast is the HYdrological Predictions for the Environment (HYPE), a semi-distributed hydrological Rainfall–Runoff model. A novel hybrid method, providing HYPE sub-basins flow computation as input to an ANN, is here introduced and tested both with and without the adoption of a decomposition approach. In the former case, two ANNs are trained to forecast the trend and the residual of the production, respectively, to be then summed up to the previously extracted seasonality component and get the power forecast. These results have been compared to those obtained from the adoption of a ANN with rainfalls in input, again with and without decomposition approach. The methods have been assessed by forecasting the Run-of-the-River hydroelectric power plant energy for the year 2017. Besides, the forecasts of 15 power plants output have been fairly compared in order to identify the most accurate forecasting technique. The here proposed hybrid method (HYPE and ANN) has shown to be the most accurate in all the considered study cases.

Suggested Citation

  • Emanuele Ogliari & Alfredo Nespoli & Marco Mussetta & Silvia Pretto & Andrea Zimbardo & Nicholas Bonfanti & Manuele Aufiero, 2020. "A Hybrid Method for the Run-Of-The-River Hydroelectric Power Plant Energy Forecast: HYPE Hydrological Model and Neural Network," Forecasting, MDPI, vol. 2(4), pages 1-19, October.
  • Handle: RePEc:gam:jforec:v:2:y:2020:i:4:p:22-428:d:428737
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/2/4/22/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/2/4/22/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simone Sala & Alfonso Amendola & Sonia Leva & Marco Mussetta & Alessandro Niccolai & Emanuele Ogliari, 2019. "Comparison of Data-Driven Techniques for Nowcasting Applied to an Industrial-Scale Photovoltaic Plant," Energies, MDPI, vol. 12(23), pages 1-19, November.
    2. Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
    3. Monteiro, Claudio & Ramirez-Rosado, Ignacio J. & Fernandez-Jimenez, L. Alfredo, 2013. "Short-term forecasting model for electric power production of small-hydro power plants," Renewable Energy, Elsevier, vol. 50(C), pages 387-394.
    4. Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
    5. Miller, Don M. & Williams, Dan, 2003. "Shrinkage estimators of time series seasonal factors and their effect on forecasting accuracy," International Journal of Forecasting, Elsevier, vol. 19(4), pages 669-684.
    6. Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
    7. Murat Cobaner & Tefaruk Haktanir & Ozgur Kisi, 2008. "Prediction of Hydropower Energy Using ANN for the Feasibility of Hydropower Plant Installation to an Existing Irrigation Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(6), pages 757-774, June.
    8. Gaudard, Ludovic & Avanzi, Francesco & De Michele, Carlo, 2018. "Seasonal aspects of the energy-water nexus: The case of a run-of-the-river hydropower plant," Applied Energy, Elsevier, vol. 210(C), pages 604-612.
    9. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcos Tadeu Barros de Oliveira & Patrícia de Sousa Oliveira Silva & Elisa Oliveira & André Luís Marques Marcato & Giovani Santiago Junqueira, 2021. "Availability Projections of Hydroelectric Power Plants through Monte Carlo Simulation," Energies, MDPI, vol. 14(24), pages 1-18, December.
    2. Marlene A. Perez-Villalpando & Kelly J. Gurubel Tun & Carlos A. Arellano-Muro & Fernando Fausto, 2021. "Inverse Optimal Control Using Metaheuristics of Hydropower Plant Model via Forecasting Based on the Feature Engineering," Energies, MDPI, vol. 14(21), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. du Plessis, A.A. & Strauss, J.M. & Rix, A.J., 2021. "Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour," Applied Energy, Elsevier, vol. 285(C).
    2. Yuxin Zhang & Yifei Yang & Xiaosi Li & Zijing Yuan & Yuki Todo & Haichuan Yang, 2023. "A Dendritic Neuron Model Optimized by Meta-Heuristics with a Power-Law-Distributed Population Interaction Network for Financial Time-Series Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, March.
    3. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    4. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    5. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    6. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    7. Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1520-1532.
    8. Curry, Bruce, 2007. "Neural networks and seasonality: Some technical considerations," European Journal of Operational Research, Elsevier, vol. 179(1), pages 267-274, May.
    9. Javier López Gómez & Ana Ogando Martínez & Francisco Troncoso Pastoriza & Lara Febrero Garrido & Enrique Granada Álvarez & José Antonio Orosa García, 2020. "Photovoltaic Power Prediction Using Artificial Neural Networks and Numerical Weather Data," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    10. Dongwang Zhang & Tuo Zhou & Zhihong Liu & Hairui Yang & Rushan Bie & Man Zhang, 2024. "Matching Analysis of Technical Parameters and Safety Standards for Nuclear Replacement of Coal-Fired Units," Energies, MDPI, vol. 17(22), pages 1-15, November.
    11. Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
    12. Salman Sharifazari & Shahab Araghinejad, 2015. "Development of a Nonparametric Model for Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5309-5322, November.
    13. Chengmin Wang & Guangji Li & Imran Ali & Hongchao Zhang & Han Tian & Jian Lu, 2022. "The Efficiency Prediction of the Laser Charging Based on GA-BP," Energies, MDPI, vol. 15(9), pages 1-12, April.
    14. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    15. Mahmud, M. A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2019. "A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe," Applied Energy, Elsevier, vol. 250(C), pages 198-214.
    16. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
    17. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    18. Gang Li & Bao-Jian Li & Xu-Guang Yu & Chun-Tian Cheng, 2015. "Echo State Network with Bayesian Regularization for Forecasting Short-Term Power Production of Small Hydropower Plants," Energies, MDPI, vol. 8(10), pages 1-14, October.
    19. Zhang, Rong & Ashuri, Baabak & Shyr, Yu & Deng, Yong, 2018. "Forecasting Construction Cost Index based on visibility graph: A network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 239-252.
    20. Siripat Somchit & Palamy Thongbouasy & Chitchai Srithapon & Rongrit Chatthaworn, 2023. "Optimal Transmission Expansion Planning with Long-Term Solar Photovoltaic Generation Forecast," Energies, MDPI, vol. 16(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:2:y:2020:i:4:p:22-428:d:428737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.