IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i3d10.1007_s11269-016-1435-2.html
   My bibliography  Save this article

Predicting Peak Flows in Real Time through Event Based Hydrologic Modeling for a Trans-Boundary River Catchment

Author

Listed:
  • Muhammad Adnan Shahid

    (ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action) Research Center, Politecnico di Torino
    University of Agriculture)

  • Piero Boccardo

    (ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action) Research Center, Politecnico di Torino)

  • Muhammad Usman

    (Institute for Groundwater Management TU Dresden
    University of Agriculture)

  • Adriana Albanese

    (ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action) Research Center, Politecnico di Torino)

  • Muhammad Uzair Qamar

    (University of Agriculture)

Abstract

Investigating the hydrological response of an area to adverse climate changes and extreme rainfall events is crucial for managing land and water resources and mitigating the natural hazards like floods. Limited availability of the in situ data, especially in case of Transboundary Rivers, further highlights the need to develop and evaluate decision support systems which may predict the flows in real time using open source rainfall data. This paper presents the study conducted in Chenab River catchment, Pakistan, to develop and evaluate a hydrologic model using HEC-HMS for predicting flows based on TRMM rainfall data. The catchment was analyzed for hydro-morphological properties using SRTM DEM in HEC-GeoHMS. To rely on open source data as much as possible, digital soil map of the world developed by FAO and global land cover map developed by European Space Agency were utilized to compute Curve Number grid data for the catchment. These preliminary data analyses were employed to set initial values of different parameters to be used for model calibration. The model was calibrated for five rainfall events occurred in the rainy seasons of 2006, 2010 and 2013. The calibrated model was then validated for four other rainfall events of similar type in the same years. Consistency in simulated and observed flows was found with percent difference in volume ranging from −6.17 % to 5.47 % and percent difference in peak flows to be in the range of 6.96 % to 7.28 %. Values of Nash-Sutcliffe Efficiency were ranging from 0.299 to 0.909 with an average value of 0.586 for all flow events. The model was found well capable of capturing the hydrologic response of the catchment due to rainfall events and can be helpful in providing alerts of peak flows in real time based on real time/forecasted rainfall data.

Suggested Citation

  • Muhammad Adnan Shahid & Piero Boccardo & Muhammad Usman & Adriana Albanese & Muhammad Uzair Qamar, 2017. "Predicting Peak Flows in Real Time through Event Based Hydrologic Modeling for a Trans-Boundary River Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 793-810, February.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:3:d:10.1007_s11269-016-1435-2
    DOI: 10.1007/s11269-016-1435-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1435-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1435-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Che & Larry Mays, 2015. "Development of an Optimization/Simulation Model for Real-Time Flood-Control Operation of River-Reservoirs Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3987-4005, September.
    2. Muhammad Azmat & Francesco Laio & Davide Poggi, 2015. "Estimation of Water Resources Availability and Mini-Hydro Productivity in High-Altitude Scarcely-Gauged Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5037-5054, November.
    3. Fares Laouacheria & Rachid Mansouri, 2015. "Comparison of WBNM and HEC-HMS for Runoff Hydrograph Prediction in a Small Urban Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2485-2501, June.
    4. Muhammad Qamar & Daniele Ganora & Pierluigi Claps, 2015. "Monthly Runoff Regime Regionalization Through Dissimilarity-Based Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4735-4751, October.
    5. Alireza B. Dariane & M. M. Javadianzadeh & L. Douglas James, 2016. "Developing an Efficient Auto-Calibration Algorithm for HEC-HMS Program," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1923-1937, April.
    6. Eyad Abushandi & Broder Merkel, 2013. "Modelling Rainfall Runoff Relations Using HEC-HMS and IHACRES for a Single Rain Event in an Arid Region of Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2391-2409, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syeda Nadia Kiran & Muhammad Farooq Iqbal & Irfan Mahmood, 2023. "Assessing the impacts of climate change on flooding under Coupled Model Intercomparison Project Phase 6 scenarios in the river Chenab, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 1005-1033, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenlin Yuan & Lu Lu & Hanzhen Song & Xiang Zhang & Linjuan Xu & Chengguo Su & Meiqi Liu & Denghua Yan & Zening Wu, 2022. "Study on the Early Warning for Flash Flood Based on Random Rainfall Pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1587-1609, March.
    2. Ayoub Tahiri & David Ladeveze & Pascale Chiron & Bernard Archimede & Ludovic Lhuissier, 2018. "Reservoir Management Using a Network Flow Optimization Model Considering Quadratic Convex Cost Functions on Arcs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3505-3518, August.
    3. Lihua Chen & Jing Yu & Jin Teng & Hang Chen & Xiang Teng & Xuefang Li, 2022. "Optimizing Joint Flood Control Operating Charts for Multi–reservoir System Based on Multi–group Piecewise Linear Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3305-3325, July.
    4. Chen Chen & Yanbin Yuan & Xiaohui Yuan, 2017. "An Improved NSGA-III Algorithm for Reservoir Flood Control Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4469-4483, November.
    5. Thelma Dede Baddoo & Zhijia Li & Yiqing Guan & Kenneth Rodolphe Chabi Boni & Isaac Kwesi Nooni, 2020. "Data-Driven Modeling and the Influence of Objective Function Selection on Model Performance in Limited Data Regions," IJERPH, MDPI, vol. 17(11), pages 1-26, June.
    6. Yumeng Yang & Juan Du & Linlin Cheng & Wei Xu, 2017. "Applicability of TRMM satellite precipitation in driving hydrological model for identifying flood events: a case study in the Xiangjiang River Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1489-1505, July.
    7. Mohammad Ehteram & Hojat Karami & Saeed Farzin, 2018. "Reservoir Optimization for Energy Production Using a New Evolutionary Algorithm Based on Multi-Criteria Decision-Making Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2539-2560, May.
    8. Fatemeh Jafari & S. Jamshid Mousavi & Jafar Yazdi & Joong Hoon Kim, 2018. "Real-Time Operation of Pumping Systems for Urban Flood Mitigation: Single-Period vs. Multi-Period Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4643-4660, November.
    9. Maryam Soleimani-Alyar & Alireza Ghaffari-Hadigheh & Fatemeh Sadeghi, 2016. "Controlling Floods by Optimization Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4053-4062, September.
    10. Minglong Dai & Jianzhong Zhou & Xiang Liao, 2016. "Research on Combination Forecast Mode of Conceptual Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4483-4499, October.
    11. Ino Papageorgaki & Ioannis Nalbantis, 2016. "Classification of Drainage Basins Based on Readily Available Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5559-5574, December.
    12. V. Ramaswamy & F. Saleh, 2020. "Ensemble Based Forecasting and Optimization Framework to Optimize Releases from Water Supply Reservoirs for Flood Control," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 989-1004, February.
    13. Qiang Fu & Long-Bin Lu & Jin-Bai Huang, 2014. "Numerical Analysis of Surface Runoff for the Liudaogou Drainage Basin in the North Loess Plateau, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4809-4822, October.
    14. D. A. Sabӑu & Gh. Şerban & P. Breţcan & D. Dunea & D. Petrea & I. Rus & D. Tanislav, 2023. "Combining radar quantitative precipitation estimates (QPEs) with distributed hydrological model for controlling transit of flash-flood upstream of crowded human habitats in Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1209-1238, March.
    15. Rajeev Ranjan & Pankaj R. Dhote & Praveen K. Thakur & Shiv P. Aggarwal, 2022. "Investigation of basin characteristics: Implications for sub-basin-level vulnerability to flood peak generation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2797-2829, July.
    16. Juliana Mendes & Rodrigo Maia, 2016. "Hydrologic Modelling Calibration for Operational Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5671-5685, December.
    17. Sanat Nalini Sahoo & P. Sreeja, 2016. "Relationship between peak rainfall intensity (PRI) and maximum flood depth (MFD) in an urban catchment of Northeast India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1527-1544, September.
    18. Fernando Mainardi Fan & Dirk Schwanenberg & Rodolfo Alvarado & Alberto Assis dos Reis & Walter Collischonn & Steffi Naumman, 2016. "Performance of Deterministic and Probabilistic Hydrological Forecasts for the Short-Term Optimization of a Tropical Hydropower Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3609-3625, August.
    19. Tewodros Assefa Nigussie & Abdusselam Altunkaynak, 2016. "Assessing the Hydrological Response of Ayamama Watershed from Urbanization Predicted under Various Landuse Policy Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3427-3441, August.
    20. Gaurav Talukdar & Janaki Ballav Swain & Kanhu Charan Patra, 2021. "Flood inundation mapping and hazard assessment of Baitarani River basin using hydrologic and hydraulic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 389-403, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:3:d:10.1007_s11269-016-1435-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.