IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v132y2019icp615-627.html
   My bibliography  Save this article

The role of glacier retreat for Swiss hydropower production

Author

Listed:
  • Schaefli, Bettina
  • Manso, Pedro
  • Fischer, Mauro
  • Huss, Matthias
  • Farinotti, Daniel

Abstract

High elevation or high latitude hydropower production (HP) strongly relies on water resources that are influenced by glacier melt and are thus highly sensitive to climate warming. Despite of the wide-spread glacier retreat since the development of HP infrastructure in the 20th century, little quantitative information is available about the role of glacier mass loss for HP. In this paper, we provide the first regional quantification for the share of Alpine hydropower production that directly relies on the waters released by glacier mass loss, i.e. on the depletion of long-term ice storage that cannot be replenished by precipitation in the coming decades. Based on the case of Switzerland (which produces over 50% of its electricity from hydropower), we show that since 1980, 3.0%–4.0% (1.0–1.4 TWh yr−1) of the country-scale hydropower production was directly provided by the net glacier mass loss and that this share is likely to reduce substantially by 2040–2060. For the period 2070–2090, a production reduction of about 1.0 TWh yr−1 is anticipated. The highlighted strong regional differences, both in terms of HP share from glacier mass loss and in terms of timing of production decline, emphasize the need for similar analyses in other Alpine or high latitude regions.

Suggested Citation

  • Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2019. "The role of glacier retreat for Swiss hydropower production," Renewable Energy, Elsevier, vol. 132(C), pages 615-627.
  • Handle: RePEc:eee:renene:v:132:y:2019:i:c:p:615-627
    DOI: 10.1016/j.renene.2018.07.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118309017
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.07.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David E. H. J. Gernaat & Patrick W. Bogaart & Detlef P. van Vuuren & Hester Biemans & Robin Niessink, 2017. "High-resolution assessment of global technical and economic hydropower potential," Nature Energy, Nature, vol. 2(10), pages 821-828, October.
    2. T. P. Barnett & J. C. Adam & D. P. Lettenmaier, 2005. "Potential impacts of a warming climate on water availability in snow-dominated regions," Nature, Nature, vol. 438(7066), pages 303-309, November.
    3. Pascal Hänggi & Rolf Weingartner, 2012. "Variations in Discharge Volumes for Hydropower Generation in Switzerland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1231-1252, March.
    4. Lehner, Bernhard & Czisch, Gregor & Vassolo, Sara, 2005. "The impact of global change on the hydropower potential of Europe: a model-based analysis," Energy Policy, Elsevier, vol. 33(7), pages 839-855, May.
    5. Byman Hamududu & Aanund Killingtveit, 2012. "Assessing Climate Change Impacts on Global Hydropower," Energies, MDPI, vol. 5(2), pages 1-18, February.
    6. Kao, Shih-Chieh & Sale, Michael J. & Ashfaq, Moetasim & Uria Martinez, Rocio & Kaiser, Dale P. & Wei, Yaxing & Diffenbaugh, Noah S., 2015. "Projecting changes in annual hydropower generation using regional runoff data: An assessment of the United States federal hydropower plants," Energy, Elsevier, vol. 80(C), pages 239-250.
    7. Bauermann, Klaas & Spiecker, Stephan & Weber, Christoph, 2014. "Individual decisions and system development – Integrating modelling approaches for the heating market," Applied Energy, Elsevier, vol. 116(C), pages 149-158.
    8. Voisin, N. & Kintner-Meyer, M. & Skaggs, R. & Nguyen, T. & Wu, D. & Dirks, J. & Xie, Y. & Hejazi, M., 2016. "Vulnerability of the US western electric grid to hydro-climatological conditions: How bad can it get?," Energy, Elsevier, vol. 115(P1), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ludovic Gaudard & Franco Romerio, 2020. "A Conceptual Framework to Classify and Manage Risk, Uncertainty and Ambiguity: An Application to Energy Policy," Energies, MDPI, vol. 13(6), pages 1-22, March.
    2. B. Igliński & M. Skrzatek & W. Kujawski & M. Cichosz & R. Buczkowski, 2022. "SWOT analysis of renewable energy sector in Mazowieckie Voivodeship (Poland): current progress, prospects and policy implications," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 77-111, January.
    3. Cook, David & Malinauskaite, Laura & Davíðsdóttir, Brynhildur & Ögmundardóttir, Helga, 2021. "Co-production processes underpinning the ecosystem services of glaciers and adaptive management in the era of climate change," Ecosystem Services, Elsevier, vol. 50(C).
    4. Zabel, Astrid & Bokusheva, Raushan & Bozzola, Martina, 2024. "Dealing with negative monetary ecosystem services values in environmental and economic accounting," Ecosystem Services, Elsevier, vol. 66(C).
    5. Elke Kellner, 2019. "Social Acceptance of a Multi-Purpose Reservoir in a Recently Deglaciated Landscape in the Swiss Alps," Sustainability, MDPI, vol. 11(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2017. "The role of glacier retreat for Swiss hydropower production," Earth Arxiv 7z96d, Center for Open Science.
    2. Jonas Savelsberg & Moritz Schillinger & Ingmar Schlecht & Hannes Weigt, 2018. "The Impact of Climate Change on Swiss Hydropower," Sustainability, MDPI, vol. 10(7), pages 1-23, July.
    3. Patro, Epari Ritesh & De Michele, Carlo & Avanzi, Francesco, 2018. "Future perspectives of run-of-the-river hydropower and the impact of glaciers’ shrinkage: The case of Italian Alps," Applied Energy, Elsevier, vol. 231(C), pages 699-713.
    4. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    5. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    6. Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
    7. Arbuckle, Evan J. & Binsted, Matthew & Davies, Evan G.R. & Chiappori, Diego V. & Bergero, Candelaria & Siddiqui, Muhammad-Shahid & Roney, Christopher & McJeon, Haewon C. & Zhou, Yuyu & Macaluso, Nick, 2021. "Insights for Canadian electricity generation planning from an integrated assessment model: Should we be more cautious about hydropower cost overruns?," Energy Policy, Elsevier, vol. 150(C).
    8. Cohen, Stuart M. & Dyreson, Ana & Turner, Sean & Tidwell, Vince & Voisin, Nathalie & Miara, Ariel, 2022. "A multi-model framework for assessing long- and short-term climate influences on the electric grid," Applied Energy, Elsevier, vol. 317(C).
    9. Richard Arsenault & François Brissette & Jean-Stéphane Malo & Marie Minville & Robert Leconte, 2013. "Structural and Non-Structural Climate Change Adaptation Strategies for the Péribonka Water Resource System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2075-2087, May.
    10. Oikonomou, Konstantinos & Tarroja, Brian & Kern, Jordan & Voisin, Nathalie, 2022. "Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research," Energy, Elsevier, vol. 238(PC).
    11. Juan A. A–el & Mohcine Bakhat & Xavier Labandeira, 2013. "Hydrological management of a heavily dammed river basin: the Mi–o-Sil," Working Papers 03-2014, Economics for Energy.
    12. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2019. "Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization," Applied Energy, Elsevier, vol. 233, pages 584-598.
    13. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    14. François, B. & Hingray, B. & Raynaud, D. & Borga, M. & Creutin, J.D., 2016. "Increasing climate-related-energy penetration by integrating run-of-the river hydropower to wind/solar mix," Renewable Energy, Elsevier, vol. 87(P1), pages 686-696.
    15. Amirali Amir Jabbari & Ali Nazemi, 2019. "Alterations in Canadian Hydropower Production Potential Due to Continuation of Historical Trends in Climate Variables," Resources, MDPI, vol. 8(4), pages 1-29, September.
    16. Zhong, Ruida & Zhao, Tongtiegang & He, Yanhu & Chen, Xiaohong, 2019. "Hydropower change of the water tower of Asia in 21st century: A case of the Lancang River hydropower base, upper Mekong," Energy, Elsevier, vol. 179(C), pages 685-696.
    17. Sample, James E. & Duncan, Niall & Ferguson, Michael & Cooksley, Susan, 2015. "Scotland׳s hydropower: Current capacity, future potential and the possible impacts of climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 111-122.
    18. Camille Gonseth & Philippe Thalmann & Marc Vielle, 2017. "Impacts of Global Warming on Energy Use for Heating and Cooling with Full Rebound Effects in Switzerland," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 153(4), pages 341-369, October.
    19. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    20. Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential," Energies, MDPI, vol. 15(19), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:132:y:2019:i:c:p:615-627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.